
 

Version 1.1
Copyright © 2016

ESP8266
Technical Reference

About This Guide
This document provides introduction to the interfaces integrated on ESP8266. Functional
overview, parameter configuration, function description, application demos and other
information is included.
The document is structured as below.

Release Notes

Chapter Title Subject

Chapter 1 Overview Overall introduction to the interfaces.

Chapter 2 GPIO Description of GPIO functions, registers and parameter
configuration.

Chapter 3 SPI Compatibility Mode
User Guide

Description of functions, DEMO solution, ESP8266 software
instruction and STM32 software solution.

Chapter 4 SPI Communication User
Guide

Description of SPI functions, master/slave protocol format and API
functions.

Chapter 5 SPI Overlap & Display
Application Guide

Description of SPI functions, hardware connection of SPI overlap
mode, API description and display screen console program demo.

Chapter 6 SPI Wi-Fi Passthrough 1-
Interrupt Mode

Description of SPI functions, SPI slave protocol format, slave status
and line breakage and API functions.

Chapter 7 SPI Wi-Fi Passthrough 2-
Interrupt Mode

Description of SPI functions, SPI slave protocol format, data flow
control line and API functions.

Chapter 8 HSPI Host Multi-device
API

Description of HSPI functions, hardware connection and API
functions.

Chapter 9 I2C User Guide Description of I2C functions, master interface and demo.

Chapter 10 I2S Module Description Description of I2S functions, system configuration and API
functions.

Chapter 11 UART Introduction
Description of UART functions, hardware resources, parameter
configuration, interrupt configuration, example of interrupt handler
process and abandon serial output during booting.

Chapter 12 PWM Interface Description of PWM functions PWM, detailed on pwm.h, and
custom channels.

Chapter 13 IR Remote Control User
Guide

Introduction on infrared transmission, parameter configuration and
functions of sample codes.

Chapter 14 Sniffer Introduction Introduction on Sniffer, application scenarios, phone App and IOT-
device firmware.

Appendix Appendix GPIO registers, SPI registers, UART registers, Timer registers.

Date Version Release notes

2016.05 V1.0 First release.

2016.06 V1.1 Added Section 4.5 Interface Description.

Date Version Release notes

Table of Contents
1. Overview	 1
...

1.1. General Purpose Input/Output Interface (GPIO)	 1
..
1.2. Secure Digital Input/Output Interface (SDIO)	 1
...
1.3. Serial Peripheral Interface (SPI/HSPI)	 1
..

1.3.1. General SPI (Master/Slave)	 2
...
1.3.2. HSPI (Slave)	 2
..

1.4. I2C Interface	 2
...
1.5. I2S Interface	 3
...
1.6. Universal Asynchronous Receiver Transmitter (UART)	 3
..
1.7. Pulse-Width Modulation (PWM)	 4
...
1.8. IR Remote Control	 4
..
1.9. Sniffer	 5
...

2. GPIO	 6
...
2.1. Functional Overview	 6
...
2.2. Instruction on GPIO Registers	 7
...

2.2.1. GPIO Function Selection Register	 7
..
2.2.2. GPIO Output Registers	 7
...
2.2.3. GPIO Input Register	 8
..
2.2.4. GPIO Interrupt Registers	 8
..
2.2.5. GPIO16 Related APIs	 9
...

2.3. Parameter onfiguration	 9
...
2.3.1. Parameter Configuration for Scene 1	 9
...
2.3.2. Parameter Configuration for Scene 2	 10
...
2.3.3. Parameter Configuration for Scene 3	 11
...
2.3.4. Interrupt Function Processing Procedures	 12
...
2.3.5. Example of The Interrupt Function Processing Procedures	 12
.......................................

3. SPI Compatibility Mode User Guide 	 13
..
3.1. Functional Overview	 13
...
3.2. DEMO Solution	 13
..

3.2.1. Introduction	 13
...
3.2.2. ESP8266 Software Compiling and Downloading	 13
...
3.2.3. ESP8266 FLASH Software Downloading	 14
...

3.2.4. ESP8266 FLASH Software Downloading	 14
...
3.3. ESP8266 Software Instruction	 15
...

3.3.1. Protocol Principle: SDIO Line Breakage and SDIO Status Register	 15
...........................
3.3.2. Instructions on The Read/Write Buffer and The Registration Linked List	 16
...................
3.3.3. API Functions in The ESP8266 DEMO	 17
...

3.4. STM32 Software Instruction	 18
..
3.4.1. Important functions	 18
...

4. SPI Communication User Guide	 21
...
4.1. Overview	 21
..

4.1.1. Functional Overview	 21
...
4.1.2. SPI Features	 21
...

4.2. ESP8266 SPI Master Protocol Format	 21
...
4.2.1. Communication Format Supported by Master SPI	 21
..
4.2.2. Master SPI Communication Format Supported by Current API	 22
.................................

4.3. ESP8266 SPI Slave Protocol Format	 22
...
4.3.1. SPI Slave Clock Polarity Configuration Requirement	 22
...
4.3.2. Communication Format Supported by Slave SPI	 22
...
4.3.3. Command Definition Supported by Slave SPI	 22
..
4.3.4. Slave SPI Communication Format Supported by Current API	 23
...................................

4.4. API Function Description of SPI Module	 23
..
4.4.1. API Function Description of Master SPI	 23
...
4.4.2. Master SPI API Function Description	 25
...

4.5. SPI Interface Description	 27
...
4.5.1. Data Structure	 27
...
4.5.2. API Description	 30
...
4.5.3. SPI_Test Demo	 35
...

5. SPI Overlap & Display Application Guide	 46
...
5.1. Functional Overview	 46
...
5.2. Hardware Connection of SPI Overlap Mode	 47
..
5.3. API Description of SPI Overlap Mode	 47
..
5.4. Display Screen Console Program DEMO	 48
...

5.4.1. Connection Description	 48
..
5.4.2. API Function Description	 48
..
5.4.3. Pre-compiled Macro Setting	 50
...

6. SPI Wi-Fi Passthrough 1-Interrupt Mode	 51
...

6.1. Functional Overview	 51
...
6.2. ESP8266 SPI Slave Protocol Format	 51
...

6.2.1. SPI Slave Clock Polarity Configuration	 51
..
6.2.2. Communication Format Supported by The SPI Slave	 51
..

6.3. Slave Status Definition and Line Breakage	 52
..
6.3.1. Status Definition	 52
...
6.3.2. GPIO0 Line Breakage	 52
...

6.4. ESP8266 SPI Slave API Functions	 52
...

7. SPI Wi-Fi Passthrough 2-Interrupt Mode	 58
...
7.1. Functional Overview	 58
...
7.2. ESP8266 SPI Slave Protocol Format	 58
...

7.2.1. SPI Slave Clock Polarity Configuration	 58
..
7.2.2. Communication Format Supported by The SPI Slave	 58
..

7.3. Instruction on The Data Flow Control Line	 59
...
7.3.1. GPIO0 MOSI Buffer Status	 59
...
7.3.2. GPIO2 Master Receives The Slave Send Buffer Status	 59
...
7.3.3. Master Communication Logic Implementation	 59
...

7.4. ESP8266 SPI Slave API Functions	 61
...

8. HSPI Host Multi-device API	 64
..
8.1. Functional Overview	 64
...
8.2. Hardware Connection	 64
..
8.3. API Description	 65
..

9. I2C User Guide	 67
...
9.1. Functional Overview	 67
...
9.2. I2C master Interface	 67
...

9.2.1. Initialization	 67
...
9.2.2. Start I2C	 67
..
9.2.3. Stop I2C	 68
..
9.2.4. I2C Master Responds ACK	 68
...
9.2.5. I2C Master Responds NACK	 68
..
9.2.6. Check I2C Slave Response	 69
..
9.2.7. Write Data on I2C Bus	 69
..
9.2.8. Read Data from I2C Bus	 69
...

9.3. Demo	 69
..

10.I2S Module Description	 71
..
10.1. Functional Overview	 71
...
10.2. System Configuration	 71
...

10.2.1. I2S Module Configuration	 71
...
10.2.2. Link List Configuration	 74
..
10.2.3. SLC Module Configuration	 75
...

10.3. API Function Description	 75
...
10.3.1. Void Function	 76
..
10.3.2. CONF Function	 76
...
10.3.3. START Function	 77
..

11.UART Introduction	 78
..
11.1. Functional Overview	 78
...
11.2. Hardware Resources	 79
..
11.3. Parameter Configuration	 79
..

11.3.1. The Baud Rate	 79
..
11.3.2. Parity Bit	 80
...
11.3.3. Data Bit	 80
...
11.3.4. Stop Bit	 80
...
11.3.5. Inverting	 80
..
11.3.6. Switch Output Port of Print Function	 81
..
11.3.7. Read The Remaining Number of Bytes in tx / rx Queue	 81
...
11.3.8. Loopback Operation (loop-back)	 81
..
11.3.9. Line Stop Signal	 81
..
11.3.10.Flow Control	 81
...
11.3.11.Other Interfaces	 82
..

11.4. Configure Interrupt	 82
...
11.4.1. Interrupt register	 82
...
11.4.2. Interface	 83
..
11.4.3. Interrupt Type	 83
..

11.5. Example of Interrupt Handler Process	 87
...
11.6. Abandon Serial Output During Booting	 87
...

12.PWM Interface	 89
..
12.1. Functional Overview	 89
...

12.1.1. Features	 89
..
12.1.2. Implementation	 89
...

12.1.3. Configuration	 90
..
12.1.4. Parameter Specification	 90
...

12.2. Details on pwm.h	 90
...
12.2.1. Sample Codes	 90
..
12.2.2. Interface Specifications	 91
..

12.3. Custom Channels	 93
...

13.IR Remote Control User Guide	 95
...
13.1. Introduction to Infrared Transmission	 95
..

13.1.1. Transmitting	 95
..
13.1.2. Receiving	 95
..

13.2. Parameters Configuration	 96
..
13.3. Functions of Infrared Sample Codes	 97
...

14.Sniffer Introduction	 98
...
14.1. Sniffer Introduction	 98
...
14.2. Sniffer Application Scenarios	 101
...
14.3. Phone APP	 102
...
14.4. IOT-device Firmware	 103
..

Appendix	 104...

!

1. Overview

1. Overview
1.1. General Purpose Input/Output Interface (GPIO)

ESP8266EX has 17 GPIO pins which can be assigned to various functions by programming
the appropriate registers.
Each GPIO can be configured with internal pull-up or pull-down, or set to high impedance,
and when configured as an input, the data are stored in software registers; the input can
also be set to edge-trigger or level trigger CPU interrupts. In short, the IO pads are bi-
directional, non-inverting and tristate, which includes input and output buffer with tristate
control inputs.
These pins can be multiplexed with other functions such as I2C, I2S, UART, PWM, IR
Remote Control, etc.
For low power operations, the GPIOs can also be set to hold their state. For instance, when
the chip is powered down, all output enable signals can be set to hold low.

Optional hold functionality can be built into the IO if requested. When the IO is not driven by
the internal or external circuitry, the hold functionality can be used to hold the state to the
last used state. The hold functionality introduces some positive feedback into the pad.
Hence, the external driver that drives the pad must be stronger than the positive feedback.
The required drive strength is small — in the range of 5μA to pull apart the latch.

1.2. Secure Digital Input/Output Interface (SDIO)
ESP8266EX has one Slave SDIO, the definitions of which are described below. 4-bit 25
MHz SDIO v1.1 and 4-bit 50 MHz SDIO v2.0 are supported.

1.3. Serial Peripheral Interface (SPI/HSPI)
ESP8266EX has 3 SPIs.
One general Slave/Master SPI

Table 1-1: Pin Definitions of SDIOs

Pin Name Pin Num IO Function Name

SDIO_CLK 21 IO6 SDIO_CLK

SDIO_DATA0 22 IO7 SDIO_DATA0

SDIO_DATA1 23 IO8 SDIO_DATA1

SDIO_DATA_2 18 IO9 SDIO_DATA_2

SDIO_DATA_3 19 IO10 SDIO_DATA_3

SDIO_CMD 20 IO11 SDIO_CMD

Espressif ! /861 2016.06

!

1. Overview

One Slave SDIO/SPI

One general Slave/Master HSPI
Functions of all these pins can be implemented via hardware. The pin definitions are
described as below.

1.3.1. General SPI (Master/Slave)

1.3.2. HSPI (Slave)

1.4. I2C Interface
ESP8266EX has one I2C used to connect with micro-controller and other peripheral
equipments such as sensors. The pin definition of I2C is as below.

Table 1-2. Pin Definitions of SPIs

Pin Name Pin Num IO Function Name

SDIO_CLK 21 IO6 SPICLK

SDIO_DATA0 22 IO7 SPIQ/MISO

SDIO_DATA1 23 IO8 SPID/MOSI

SDIO_DATA_2 18 IO9 SPIHD

SDIO_DATA_3 19 IO10 SPIWP

U0TXD 26 IO1 SPICS1

GPIO0 15 IO0 SPICS2

! Note:

SPI mode can be implemented via software programming. The clock frequency is 80 MHz at maximum.

Table 1-3. Pin Definitions of HSPI (Slave)

Pin Name Pin Num IO Function Name

MTMS 9 IO14 HSPICLK

MTDI 10 IO12 HSPIQ/MISO

MTCK 12 IO13 HSPID/MOSI

MTDO 13 IO15 HPSICS

Table 1-4. Pin Definitions of I2C

Pin Name Pin Num IO Function Name

MTMS 9 IO14 I2C_SCL

GPIO2 14 IO2 I2C_SDA

Espressif ! /862 2016.06

!

1. Overview

Both I2C Master and I2C Slave are supported. I2C interface functionality can be realized via
software programming, the clock frequency reaches 100 kHz at a maximum. It should be
noted that I2C clock frequency should be higher than the slowest clock frequency of the
slave device.

1.5. I2S Interface
ESP8266EX has one I2S data input interface and one I2S data output interface. I2S
interfaces are mainly used in applications such as data collection, processing, and
transmission of audio data, as well as the input and output of serial data. For example, LED
lights (WS2812 series) are supported. The pin definition of I2S is as below. I2S functionality
can be enabled via software programming by using multiplexed GPIOs, and linked list DMA
is supported.

1.6. Universal Asynchronous Receiver Transmitter (UART)
ESP8266EX has two UART interfaces UART0 and UART, the definitions are as below.

Data transfers to/from UART interfaces can be implemented via hardware. The data
transmission speed via UART interfaces reaches 115200 x 40 (4.5 Mbps).

UART0 can be used for communication. It supports fluid control. Since UART1 features
only data transmit signal (Tx), it is usually used for printing log.

Table 1-5. Pin Definitions of I2S

I2S Data Input

Pin Name Pin Num IO Function Name

MTDI 10 IO12 I2SI_DATA

MTCK 12 IO13 I2SI_BCK

MTMS 9 IO14 I2SI_WS

MTDO 13 IO15 I2SO_BCK

U0RXD 25 IO3 I2SO_DATA

GPIO2 14 IO2 I2SO_WS

Table 1-6. Pin Definitions of UART

Pin Type Pin Name Pin Num IO Function Name

UART0

U0RXD 25 IO3 U0RXD

U0TXD 26 IO1 U0TXD

MTDO 13 IO15 U0RTS

MTCK 12 IO13 U0CTS

UART1
GPIO2 14 IO2 U1TXD

SD_D1 23 IO8 U1RXD

Espressif ! /863 2016.06

!

1. Overview

1.7. Pulse-Width Modulation (PWM)
ESP8266EX has four PWM output interfaces. They can be extended by users themselves.
The pin definitions of the PWM interfaces are defined as below.

The functionality of PWM interfaces can be implemented via software programming. For
example, in the LED smart light demo, the function of PWM is realized by interruption of the
timer, the minimum resolution reaches as much as 44 ns. PWM frequency range is
adjustable from 1000 μs to 10000 μs, i.e., between 100Hz and 1 kHz. When the PWM
frequency is 1 kHz, the duty ratio will be 1/22727, and over 14 bit resolution will be
achieved at 1 kHz refresh rate.

1.8. IR Remote Control

One Infrared remote control interface is defined as below.

The functionality of Infrared remote control interface can be implemented via software
programming. NEC coding, modulation, and demodulation are used by this interface. The
frequency of modulated carrier signal is 38 kHz, while the duty ratio of the square wave is
1/3. The transmission range is around 1m which is determined by two factors: one is the
maximum value of rated current, the other is internal current-limiting resistance value in the
infrared receiver. The larger the resistance value, the lower the current, so is the power, and
vice versa. The transmission angle is between 15° and 30° which is determined by the
radiation direction of the infrared receiver.

! Note:

By default, UART0 outputs some printed information when the device is powered on and booting up. The
baud rate of the printed information is relevant to the frequency of the external crystal oscillator. If the
frequency of the crystal oscillator is 40 MHz, then the baud rate for printing is 115200; if the frequency of the
crystal oscillator is 26 MHz, then the baud rate for printing is 74880. If the printed information exerts any
influence on the functionality of the device, it is suggested to block the printing during the power-on period by
changing (U0TXD,U0RXD) to (MTDO,MTCK).

Table 1-7. Pin Definitions of PWM

Pin Name Pin Num IO Function Name

MTDI 10 IO12 PWM0

MTDO 13 IO15 PWM1

MTMS 9 IO14 PWM2

GPIO4 16 IO4 PWM3

Table 1-8. Pin Definitions of IR Remote Control

Pin Name Pin Num IO Function Name

MTMS 9 IO14 IR Tx

GPIO5 24 IO5 IR Rx

Espressif ! /864 2016.06

!

1. Overview

1.9. Sniffer
ESP8266 can enter promiscuous mode (sniffer). ESP8266 can capture complete IEEE
802.11 packets in the air or it can obtain the length of the packets.

Espressif ! /865 2016.06

!

2. GPIO

2. GPIO
2.1. Functional Overview

The ESP8266 has 16 general IOs. Their pin numbers and names are shown in the table
below:

In the QUAD mode flash, 6 IO interfaces are used for flash communication.
In the DUAL mode flash, 4 IO interfaces are used for flash communication.

Table 2-1. GPIO Pin Definition

GPIO NO. Pin NO. Pin name

GPIO0 pin15 GPIO0_U

GPIO1 pin26 U0TXD_U

GPIO2 pin14 GPIO2_U

GPIO3 pin25 U0RXD_U

GPIO4 pin16 GPIO4_U

GPIO5 pin24 GPIO5_U

GPIO6 pin21 SD_CLK_U

GPIO7 pin22 SD_DATA0_U

GPIO8 pin23 SD_DATA1_U

GPIO9 pin18 SD_DATA2_U

GPIO10 pin19 SD_DATA3_U

GPIO11 pin20 SD_CMD_U

GPIO12 pin10 MTDI_U

GPIO13 pin12 MTCK_U

GPIO14 pin9 MTMS_U

GPIO15 pin13 MTDO_U

! Note:

Users may find the following documents helpful:

• Appendix 1 - GPIO Registers

• List of ESP8266 pin functions: ESP8266_Pin_List.xlsx: 
http://bbs.espressif.com/viewtopic.php?f=21&t=412&p=1545#p1545

Espressif ! /!6 104 2016.06

!

2. GPIO

2.2. Instruction on GPIO Registers
2.2.1. GPIO Function Selection Register

The ESP8266 MTDI is used to demonstrate the GPIO function selection.

Function selection register PERIPHS_IO_MUX_MTDI_U (this register differs for different
GPIOs)

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

FUNC_GPIO12=3.
Configurations differ for different pins.
During the configuration, refer to ESP8266_Pin_List.xlsx. On the Digital Die Pin List page,
users can see the general GPIO and their multiple functions. On the Reg page, users can
find registers related to GPIO function selection.
On the Digital Die Pin List page, users can find the function configuration in the FUNCTION
column.

2.2.2. GPIO Output Registers

• Output enable register: GPIO_ENABLE_W1TS
bit[15:0] the output enable bit (readable and writable):

If the related bit is set to be 1, the IO output is enabled. Bit[15:0] contains 16 GPIO output
enable bits.

• Output disable register: GPIO_ENABLE_W1TC
bit[15:0] the output disable bit (readable and writable):
If the related bit is set to be 1, the IO output is disabled. Bit[15:0] contains 16 GPIO output
disable bits.

• Output enable status register: GPIO_ENABLE
bit[15:0] the output enable status bit (readable and writable):
Value of bit[15:0] of this register shows the related pin output enable status.
By writing data into bit[15:0] of GPIO_ENABLE_W1TS and bit[15:0] of
GPIO_ENABLE_W1TC, users can control bit[15:0] of GPIO_ENABLE. For example, when
bit[0] of GPIO_ENABLE_W1T is set to be 1, then bit[0] of GPIO_ENABLE =1; when bit[1] of
GPIO_ENABLE_W1TC is set to be 1, then bit[1] of GPIO_ENABLE = 0.

• Output low level register GPIO_OUT_W1TC

bit[15:0] output low level bit (write only register):

⚠ Notice:
If you want to configure it to be FUNCTION X, write X -1 into the bit in the register. For example, if you want
to configure it to be FUNCTION 3, write 2 into the bit in the register.

Espressif ! /!7 104 2016.06

!

2. GPIO

If the related bit is set to be 1, the IO output is low level (at the same time, users should
enable the output). Bit[15:0] contains 16 GPIO output statuses.

• Output high level register GPIO_OUT_W1TS
bit[15:0] output high level bit (write only register):
If the related bit is set to be 1, it means the IO output is high level (at the same time, users
should enable the output). Bit[15:0] contains 16 GPIO output statuses.

• Output status register GPIO_OUT
bit[15:0] output status bit (read/write register):

Value of bit[15:0] of this register shows the related pin output status.
Bit[15:0] of GPIO_OUT is decided by bit[15:0] of GPIO_OUT_W1TS and bit[15:0] of
GPIO_OUT_W1TC. For example, when bit[1] of GPIO_OUT_W1TS =1, then GPIO_OUT[1]
=1; when bit[2] of GPIO_OUT_W1TC = 1, then GPIO_OUT[2]=0.

2.2.3. GPIO Input Register

bit[15:0] the input status bit (readable and writable):
If the related bit is set to be 1, the IO pin status is high level. If the related bit is set to be 0,
the IO pin status is low level. Bit[15:0] contains 16 GPIO input status bits.

2.2.4. GPIO Interrupt Registers

• Interrupt type register GPIO_PIN12 (this register differs for different GPIOs)
bit[9:7] (readable and writable):
0: the GPIO interrupt is disabled
1: rising edge triggered interrupt
2: falling edge triggered interrupt

3: double-edge triggered interrupt
4: low level
5: high level

! Note:

If users need to set the pin to high level, they need to configure the GPIO_OUT_W1T register.

! Note:

If users need to set the pin to low level, they need to configure the GPIO_OUT_W1TC register.

! Note:

The GPIO input detection function is enabled by default.

Espressif ! /!8 104 2016.06

!

2. GPIO

• Interrupt status register GPIO_STATUS
Bit[15:0] (readable and writable):

If the related bit is set to be 1, the IO interrupts. Bit[15:0] contains 16 GPIOs.
• Interrupt clearing register GPIO_STATUS_W1TC

Bit[15:0] (readable and writable):
Write 1 into the related bit, the related GPIO interrupt status will be cleared.

2.2.5. GPIO16 Related APIs

Different from other IO interfaces, GPIO16(XPD_DCDC) belongs to the RTC module instead
of the general GPIO module. It can be used to wake up the chip during deep-sleep; it can
be configured to input or output mode; but it cannot trigger the IO interrupt. the APIs are
shown below.

• gpio16_output_conf(void)
Set the GPIO16 to the output mode.

• gpio16_output_set(uint8 value)
Output high/low level from GPIO16. Configure GPIO16 to the output mode first.

• gpio16_input_conf(void)
Set the GPIO16 to the input mode.

• gpio16_input_get(void)
Read the GPIO16 input level status. Configure GPIO16 to the input mode first.

2.3. Parameter onfiguration
Three scenes are given as examples for parameter configuration:

• Configure the MTDI output high level, and enable the pull up.
• Configure the MTDI to the input mode, and get its level status.
• Configure the MTDI to falling edge triggers interrupt.

2.3.1. Parameter Configuration for Scene 1

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.
For details of PERIPHS_IO_MUX_MTDI_U register, refer to Section 2.2, Instruction on
GPIO Register.

2. Configure the MTDI output high level.

GPIO_OUTPUT_SET(GPIO_ID_PIN(12), 1);

Espressif ! /!9 104 2016.06

!

2. GPIO

This sentence has two functions:

• Write 1 into bit 12 of GPIO_ENABLE_W1TS register. It enables the MTDI output
function.

• Write 1 into bit 12 of GPIO_OUT_W1TS register. It sets MTDI output to high level.

GPIO_OUTPUT_SET(GPIO_ID_PIN(12), 0);

This sentence has two functions:

• Write 1 into bit 12 of GPIO_ENABLE_W1TS register. It enables the MTDI output
function.

• Write 1 into bit 12 of GPIO_OUT_W1TC register. It sets MTDI output to low level.

3. Enable the MTDI pull up.

PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDI_U);

It writes 1 into bit 7 of PERIPHS_IO_MUX_MTDI_U. It enables the MTDI pull up.

PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTDI_U);

2.3.2. Parameter Configuration for Scene 2

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.

2. Configure the MTDI to the input mode.

GPIO_DIS_OUTPUT(GPIO_ID_PIN(12));

3. Get the MTDI pin level status.

Uint8 level=0;

level=GPIO_INPUT_GET(GPIO_ID_PIN(12))

GPIO_INPUT_GET(GPIO_ID_PIN(12)) gets the status of bit 12 of GPIO_IN register. The
value of this register shows the input level of related pin. (Enable the input function of the
related pin first to get effective register status)

! Note:

To set MTDI output to low level, set the second parameter of this function to be 0.

! Note:

To disable the MTDI pull up, use the following sentence:

Espressif ! /!10 104 2016.06

!

2. GPIO

2.3.3. Parameter Configuration for Scene 3

typedef enum {

GPIO_PIN_INTR_DISABLE = 0,

GPIO_PIN_INTR_POSEDGE = 1,

GPIO_PIN_INTR_NEGEDGE = 2,

GPIO_PIN_INTR_ANYEGDE = 3,

GPIO_PIN_INTR_LOLEVEL = 4,

GPIO_PIN_INTR_HILEVEL = 5

} GPIO_INT_TYPE;

This structure is used to configure the GPIO interrupt trigger manner. It is declared in
gpio.h.

1. Configure the MTDI to GPIO mode.

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);

This sentence writes 1 into bits 4-5 of PERIPHS_IO_MUX_MTDI_U register. When bits 4-5
of PERIPHS_IO_MUX_MTDI_U are set to be 1, the MTDI is configured to the GPIO mode.

2. Configure the MTDI to the input mode.

GPIO_DIS_OUTPUT(GPIO_ID_PIN(12));

3. Disable all IO interrupts.

ETS_GPIO_INTR_DISABLE();

4. Set the interrupt handler function.

ETS_GPIO_INTR_ATTACH(GPIO_INTERRUPT,NULL);

5. Configure MTDI to falling edge triggers interrupt.

gpio_pin_intr_state_set(GPIO_ID_PIN(12),GPIO_PIN_INTR_NEGEDGE);

This sentence writes 0x02 into bit[9:7] of GPIO_PIN12 register. It sets MTDI to falling edge
triggers interrupt.

6. Enable the GPIO interrupt.

! Note:

• If MTDI is at high level, then the return value of GPIO_INPUT_GET is 1, level = 1;

• If MTDI is at low level, then the return value of GPIO_INPUT_GET is 0, level = 0.

! Note:

If users want to disable the MTDI interrupt function, write 0x02 into bit[9:7] of GPIO_PIN12 register.

For other interrupt triggering mode configuration, refer to 2.2 Instruction on GPIO Registers.

Espressif ! /!11 104 2016.06

!

2. GPIO

ETS_GPIO_INTR_ENABLE();

2.3.4. Interrupt Function Processing Procedures

1. Clear the interrupt.

Uint16 gpio_status=0;

gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);

GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status);

For instructions on GPIO_STATUS and GPIO_STATUS_W1TC, refer to Section 2.2
Instruction on GPIO Registers.

2. check which IO triggered the interrupt (when multiple IOs are configured to be in
interrupt mode)

If(gpio_status==GPIO_Pin_12)

3. If it is double-edge triggered interrupt, check whether this interrupt is triggered by
rising or falling edge.

if(!GPIO_INPUT_GET(GPIO_ID_PIN(12))) //if this MTDI interrupt is
triggered by falling edge.

2.3.5. Example of The Interrupt Function Processing Procedures

�

Espressif ! /!12 104 2016.06

!

3. SPI Compatibility Mode User Guide

3. SPI Compatibility Mode User
Guide

3.1. Functional Overview
This protocol uses the SDIO mode of the ESP8266 to communicate with other processor's
SPI hosts. The electrical interface is connected through signal line No.4, including the
SCLK, MOSI, MISO and interrupt signal No.1 in the SPI protocol (note: no CS signal).
Downloading the ESP8266 SDIO can be different from downloading other programs. When
the ESP8266 starts, the system reads the pin shared by the SPI interface and the SDIO
interface by default. Therefore, the SDIO module communication protocol should be used.
The ESP8266 should start in the SDIO mode, and then, the host will start the chip in the
ESP8266 RAM through the SDIO downloaded programs. The majority of the programs that
directly use CPU CACHE to call FLASH can be burnt to the FLASH chip connected to the
HSPI interface beforehand.
Data received or sent by the ESP8266 SDIO is processed directly by the DMA module that
supports linked list index.
The ESP8266 can receive and send the SDIO packets efficiently without using the CPU. It
does so through the address of the memory map linked list.

3.2. DEMO Solution
3.2.1. Introduction

The host is the Red Dragon demo board with STM32F103ZET6 as its core.The software is
the FreeRTOS system developed by the IAR platform. The slave is the ESP_IOT reference
board, which is based on the v0.9.3 SDK development.

3.2.2. ESP8266 Software Compiling and Downloading

• In the SDIO communication demo \esp_iot_sdk_v0.9.3_sdio_demo\ap, use the
compiler to compile and generate the bin documents for downloading in order to
complete the ESP8266 DEMO work.

• ibmain.a in SDIO communication demo \esp_iot_sdk_v0.9.3_sdio_demo\lib is
different from the version released in v0.9.3. When you use the released version of
the SDK, use libmain.a in the DEMO to replace the original one. The new libmain.a
will start the chip, and exchange the SPI module that reads FLASH and the HSPI
mapping pin. Then, you can use DEMO to compile and generate.

• Copy eagle.app.v6.irom0text.bin in SDIO communication demo
\esp_iot_sdk_v0.9.3_sdio_demo\bin to SDIO communication demoboard

Espressif ! /!13 104 2016.06

!

3. SPI Compatibility Mode User Guide

\XTCOM_UTIL. eagle.app.v6.irom0text.bin is all the functions of FLASH chip read
directly through the SPI by CPU CACHE in the ESP8266 program.

• Run BinToArray.exe in SDIO communication demo\. Transfer
eagle.app.v6.flash.bin in SDIO communication demo
\esp_iot_sdk_v0.9.3_sdio_demo\ bin to ANSI C format array. The new array will be
saved in D:\. The target route of BinToArray.exe must be D:\. If there is not a D:\, you
can (1) use a virtual machine with a D:\; (2) connect the device to a U disk named D:\;
or (3) search online for a tool that can transfer bin to array.

• If there is a D:\, name hexarray.c in D:\ as eagle_fw.h, and define the array name as
const unsigned char eagle_fw[] =....... Replace eagle_fw.h in SDIO communication
demo\STM32\ Eagle_Wifi_Driver\ egl_drv_simulation\ (you can copy the array
name and document name in the old eagle_fw.h, rename the hexarray.c and use it
to replace the old eagle_fw.h.). Before starting the chip, write eagle.app.v6.flash.bin
into the ESP8266 memory. eagle.app.v6.flash.bin should be transferred to array,
and be written into the ESP8266 through STM32.

• Use the IAR platform to open EglWB.ewp.eww in SDIO communication demo
\STM32\IAR\ to compile the programs.

3.2.3. ESP8266 FLASH Software Downloading

1. Use the serial line to connect the ESP_IOT reference board and the computer, and
connect them with a 5V power supply. Connect J67 to the 2 pins on the right (enable
the FLASH chip in the HSPI interface), and J66 to the 2 pins on the left (disable the
FLASH chip in the SPI interface). Set MTD0, GPIO0 and GPIO2 to the UART mode 0,
0,1 (up, up, down).

2. Double-click XTCOM_UTIL.exe in SDIO communication demo\XTCOM_UTIL. Click
Tools -> Config Device, and choose Com interface. Baud Rate: 115200. Click Open,
and you will see open Success. Click Connect, and push the H Flash board power,
you will see the connection is completed.

3. Click API TEST(A)->(5) HSpiFlash Image Download, and choose
eagle.app.v6.irom0text.bin in SDIO communication demo\XTCOM_UTIL. Offset:
0x40000. Click Download, and the downloading will be completed.

3.2.4. ESP8266 FLASH Software Downloading

Use the pin header to connect the ESP_IOT reference board and the Red Dragon demo
board. The details are shown below:
In the Red Dragon demo board JP1:
J62 pin headers in the ESP_IOT reference board (bottom-up)

GND -> 1 VSS/GND
SPI_CLK -> 4 SDIO_CLK

Espressif ! /!14 104 2016.06

!

3. SPI Compatibility Mode User Guide

SPI_MOSI -> 5 SDIO_CMD

SPI_MISO -> 3 SDIO_DAT0
IRQ -> 2 SDIO_DAT1
The ESP_IOT reference board: change the jumper MTD0 to 1 (short the 2 pins below),
GPIO0, GPIO2 random (1, x, x is the SDIO starting mode), CHIP_PD:ON (flip the switch
downward). Keep jumper J66 connected to the 2 pins on the left, and jumper J67
connected to the 2 pins on the right.
Connect the 5V power adapter to the ESP_IOT reference board and the Red Dragon demo
board. Turn on the demoboard power, download the compiled programs mentioned in
Section 2.2 to STM32 in the IAR environment. Start the STM32 program, and turn on the
ESP_IOT reference board power. the STM32 will write the starting program into the
ESP8266, and after several seconds, it will automatically run the SDIO to return to the
testing program.

3.3. ESP8266 Software Instruction
3.3.1. Protocol Principle: SDIO Line Breakage and SDIO Status Register

In the SDIO SPI compatibility mode, pin SD_DATA1 of the ESP8266 is used as the interrupt
line to send signals to the SPI host, and the signals are active low. When the ESP8266
SDIO status register is upgraded by software, the interrupt line will change from active high
to active low. The host should write in data to resume the active high through SDIO. (to be
specific, the host should write 1 into register with the address 0x30 through CMD53 or
CMD52 command in order to resume the active high of the interrupt line.)
the SDIO status register is 32 bits, it is revised by ESP8266 software, and it can be read by
the host through CMD53 or CMD52 command. The address is 0x20-0x23. The data
structure is shown as below:

struct sdio_slave_status_element

{

u32 wr_busy:1;

u32 rd_empty :1;

u32 comm_cnt :3;

u32 intr_no :3;

u32 rx_length:16;

u32 res:8;

};

To be specific:
• wr_busy, bit 0: 1, write buffer of the slave is full, and the ESP8266 is processing data

from the host; 0, write buffer is empty, users can write data into the buffer.

Espressif ! /!15 104 2016.06

!

3. SPI Compatibility Mode User Guide

• rd_empty, bit 1: 1, read buffer of the slave is empty, no data has been updated; 0,
there is new data in the buffer for the host to read.

• comm_cnt, bit 2-4: count the read/write communication. Each time the ESP8266
SDIO module finishes an effective packet-reading/packet-writing, the count will
increase by 1. Therefore, the host can judge whether a read/write communication has
been effectively responded by the ESP8266.

• intr_no, bit 5-7: the protocol does not use this variable; reserved.
• rx_length, bit 8-23: actual length of the packets prepared in the read buffer.

• res, bit 24-31: reserved.

The communication procedures of the host are shown as below:
• upon receiving the interrupt request, the host reads the SDIO status register, and

then clears the interuption, and reads/writes the packets according to the status
register;

• it checks the SDIO status register regularly, and reads/writes the packets according
to the status register.

3.3.2. Instructions on The Read/Write Buffer and The Registration Linked List

DMA will directly send packets received and sent by the ESP8266 SDIO to corresponding
memories. The ESP8266 software will define the linked list registration structure (or array),
and buffer(s). In this example, only one buffer is used, and there is only one element in the
linked list. Write the first address of the buffer into the linked list registration structure, and
write in other information. When you write the first address of the linked list structure into
the corresponding hardware register in the ESP8266, the DMA can automatically process
the SDIO and the buffer.
The linked list registration structure is shown as below:

!
• owner: 1'b0: operator of the current link buffer is SW; operator of the current link

buffer. MAC does not use this bit. 1'b1: operator of the current link buffer is HW.
• eof: flag of the end of the frame (for the end of AMPDU sub-frames, this flag is not

needed). When the MAC sends the frames, it is used to mark the end of the frames.
For links in eof, buffer_length[11:0] must be equal to the length of the remaining part
of the frame. Otherwise, the MAC will report an error. When the MAC receives frames,
it is used to indicate that the reception has been completed, and the value is set by
hardware.

Espressif ! /!16 104 2016.06

!

3. SPI Compatibility Mode User Guide

• sub_sof: the flag of the start of the sub-frame. It is used to distinguish different
AMPDU sub-frames. It is only used when the MAC is sending packets.

• length[11:0]: actual size of the buffer.
• size[11:0]: total size of the buffer.
• buf_ptr[31:0]: starting address of the buffer.
• next_link_ptr[31:0]: starting address of the next discripter. When the MAC is receiving

frames, the value is 0, indicating that there is no empty buffer to receive the frames.

3.3.3. API Functions in The ESP8266 DEMO
1. void sdio_slave_init(void)

Function: Initialise the SDIO module, including initialising the status register, initialising the
Rx and Tx registration linked list, configuring the communication interrupt line mode,
configuring packet-sending/receiving interruption, and registering the interrupt service
routine, etc.

2. void sdio_slave_isr(void *para)
Function and trigger condition: The SDIO interrupt processing function; this function will be
triggered when the SDIO successfully receives or sends a packet. in DEMO, all the
ESP8266 testing procedures are completed in the interrupt processing function. All the
processing procedures of the registration linked lists, status registers and data during the
communication process can be found in this function.

3. void rx_buff_load_done(uint16 rx_len)
Function: When rx_buffer receives new packets, this function should be called to change
the status of the new packets to "to be read". This function contains related operations of
the software/hardware of the registration linked list, and the status register. In DEMO, this
function will be called in the interrupt service routine.

Parameter: rx_len: actual length of the new packet (unit: byte).
4. void tx_buff_handle_done(void)

Function: When data in tx_buffer has been processed, this function should be called to
change the SDIO status to "sent" in order to receive the next packet. This function
contains related operations of the software/hardware of the registration linked list, and the
status register. In DEMO, this function will be called in the interrupt service routine.

5. void rx_buff_read_done(void)
Function: When data in rx_buffe has been read, this function should be called to change
the SDIO status to "non-readable". This function contains related operations of the status
register, and should be called at the beginning of the RX_EOF interrupt service.

6. void tx_buff_write_done(void)
Function: When tx_buffer receives new packets, this function should be called to change
the SDIO status to "non-writable". This function contains related operations of the status
register, and should be called at the beginning of the TX_EOF interrupt service.

Espressif ! /!17 104 2016.06

!

3. SPI Compatibility Mode User Guide

7. TRIG_TOHOST_INT()
Function: Macro, pull low the communication interrupt line, inform the host.

8. Other functions
Other functions are used for tests.

3.4. STM32 Software Instruction
3.4.1. Important functions

1. void SdioRW(void *pvParameters)
Function:
SDIO testing thread, it contains all the read/write procedures.
Location:

egl_thread.c. Registered by SPITest() of the same file in egl_thread.c.
2. int esp_sdio_probe(void)

Function:
Enable related programs in the ESP8266.

Location:
esp_main_sim.c. Called by SPITest() in egl_thread.c.

3. int sif_spi_write_bytes(u32 addr, u8*src,u16 count,u8 func)
Function:
Write the SDIO byte mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can process the register and the packets. According to the SDIO protocol,
the maximum data length is 512 Bytes.

Location:

port_spi.c. Called by SdioRW in egl_thread.c.

Parameters:
src: starting address of the packet to be sent.
count: length of the packet to be sent, (unit: Byte).

func: function number. It is 0 for communication of block_size in the block mode used to
revise the SDIO CMD53, and 1 for all other communications.
addr: starting address of the data to be written in. If you want to process the register, input
the corresponding address, for example, 0x30, interrupt line clearance register, 0x110,
revise block_size (func=0). If you want to process the packets, input a value that equals to
0x1f800 - tx_length, and 0x1f800 - tx_length should equal to count. If count > tx_lengt, the
SPI host will send packets of count length. But data between tx_length + 1 and count will

Espressif ! /!18 104 2016.06

!

3. SPI Compatibility Mode User Guide

be discarded by the ESP8266 SDIO module. Therefore, when sending packets, addr is
related to the actual length of the effective data.

4. int sif_spi_read_bytes(u32 addr,u8* dst,u16 count,u8 func)
Function:
The SDIO byte mode reads the API; encapsulate the read function of the CMD53 byte
mode. It can process the register or the packets. According to the SDIO protocol, the
maximum data length is 512 Bytes.
Location:

port_spi.c. Called by SdioRW in egl_thread.c.

Parameters:
dst: starting address of the receiving buffer

count: length of the packet to be received (unit: Byte)
func: function number. It is 0 for communication of block_size in the block mode used to
read the SDIO CMD53, and 1 for all other communications.

addr: starting address of the data to be read. If you want to operate the register, input the
corresponding address. For example, 0x20, the SDIO status register. If you want to operate
the packets, input a value that equals 0x1f800 - tx_length, and 0x1f800 - tx_length
equals count. If count > tx_length, the SPI host will send packets of count length. But
data between tx_length + 1 and count will be discarded by the ESP8266 SDIO
module. Therefore, when sending packets, addr is related to the actual length of the
effective data.

5. int sif_spi_write_blocks(u32 addr, u8 * src, u16 count,u16
block_size)

Function:
Write the SDIO block mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can only transport the packets, According to the SDIO protocol, the
maximum data length is 512 blocks.
Location:

port_spi.c. Called by dioRW in egl_thread.c and sif_io_sync used by the
program downloader in esp_main_sim.c.

Parameters:
src: starting address of the packet to be sent.
count: length of the packet to be sent (unit: block)

block_size: the number of bytes in 1 block. It should be equal to the 16 bit value whose
func=0, and whose addr=0x110-111. In general, when initialising the SDIO, block_size of
the ESP8266 SDIO should be configured. The starting value of DEMO is 512. During the
operation, it is configured to be 1024. block_size should be an integer multiple of 4.

Espressif ! /!19 104 2016.06

!

3. SPI Compatibility Mode User Guide

addr: starting address of the data to be written in. Input a value that equals 0x1f800 -
tx_length (the same as the byte mode), and the tx_length should equal to count.

6. int sif_spi_read_blocks(u32 addr, u8 *dst, u16 count,u16
block_size)

Function:
Write the SDIO block mode into the API; encapsulate the write-in function of the CMD53
byte mode. It can only transport the packets, According to the SDIO protocol, the
maximum data length is 512 blocks.
Location:

port_spi.c. Called by dioRW in egl_thread.c and sif_io_sync used by the
program downloader in esp_main_sim.c.

Parameters:
src: starting address of the receiving buffer

count: length of the packet to be received (unit: block)
block_size: the number of bytes in 1 block. It should be equal to the 16 bit value whose
func = 0, and whose addr=0x110-111. In general, when initialising the SDIO,
block_size of the ESP8266 SDIO should be configured. The starting value of DEMO is
512. During the operation, it is configured to be 1024. block_size should be an integer
multiple of 4.
addr: starting address of the data to be read. Input a value that equals 0x1f800 -
tx_length (the same as the byte mode), and the tx_length should equal to count.

7. void EXTI9_5_IRQHandler(void)
Function:
The communication interrupt processing function offers enable signal for
egl_arch_sem_wait (& BusIrqReadSem,1000) in thread function SdioRW, so that
SdioRW thread can exit the wait state, and read the SDIO status register.
Location:

spi_cfg.c

Espressif ! /!20 104 2016.06

!

4. SPI Communication User Guide

4. SPI Communication User
Guide

4.1. Overview
4.1.1. Functional Overview

ESP8266 SPI module is used for communication with devices supporting SPI protocols. It
supports the SPI protocol standard of 4 line communication CS, SCLK, MOSI, MISO in
the electrical interface. ESP8266 SPI module has special support for FLASH memory in
the SPI interface. Therefore, master and slave SPI module have its corresponding hardware
protocol to match with the SPI communication device.

4.1.2. SPI Features

• Supports standard master and slave modes;
• Supports length-programmable hardware commands and addresses, up to 16 bits

and 64 bits;
• Word-aligned data buffer, up to 64 bytes;
• Programmable read/write status register in slave mode;
• Selection of 3 CS pins;
• Clock frequency up to 80 MHz;
• Programmable clock polarity;
• MSB or LSB first;
• Selection of byte order in SPI buffer transmission;
• Selection of multiple interrupt sources, including transmit end, read/write data and

read/write status.

4.2. ESP8266 SPI Master Protocol Format
4.2.1. Communication Format Supported by Master SPI

Master ESP8266SPI communication format is command+address+read/write data, which
is,

• Command: a must; length: 1 ~ 16 bits; master output and slave input (MOSI).
• Address: optional; length: 0 ~ 32 bits master output and slave input (MOSI).

• Read/write data: optional; length: 0 ~ 512 bits (64 Bytes); master output and slave
input (MOSI) or master input and slave output (MISO).

Espressif ! /!21 104 2016.06

!

4. SPI Communication User Guide

4.2.2. Master SPI Communication Format Supported by Current API

The API function of ESP8266 SPI has two master initialization modes: one supports most
of the general signals and the other is designed for driving a colored LCD screen. The
device needs non-standard 9 bits SPI communication format. Please refer to Section 4.4.1
for detailed information.

4.3. ESP8266 SPI Slave Protocol Format
4.3.1. SPI Slave Clock Polarity Configuration Requirement

The master device clock polarity configuration of ESP8266 SPI slave communication
should be set with idle low power , rising edge sampling and falling edge data
transformation. Please make sure to keep low power for CS in a 16’s reading/writing
process. If the CS power is raised to high level while sending, the internal state of slave will
be reset.

4.3.2. Communication Format Supported by Slave SPI

Slave ESP8266SPI communication format is almost the same as that of the master mode,
i.e. command+address+read/write data, but the slave read/write operation has its
hardware command and undeletable address, which is,

• Command: a must; length: 3 ~ 16 bits; master output and slave input (MOSI).
• Address: a must; length: 1 ~ 32 bits master output and slave input (MOSI).

• Read/write data: optional; length: 0 ~ 512 bits (64 Bytes); master output and slave
input (MOSI) or master input and slave output (MISO).

4.3.3. Command Definition Supported by Slave SPI

The length of slave receiving command should at least be 3 bits. For low 3 bits, there are
hardware reading and writing operation, which is,

• 010 (slave receiving) : Write the data sent by master into the register of slave data
caching via MOSI, i.e. SPI_FLASH_C0 to SPI_FLASH_C15.

• 011 (slave sending): Send the data in the register of slave data caching (from
SPI_FLASH_C0 to SPI_FLASH_C15) to master via MOSI.

• 110 (slave receiving and sending): Send slave data caching to MISO and write the
master data in MOSI into data caching SPI_FLASH_C0 to SPI_FLASH_C15.

⚠ Notice:
Other vales are used to read and write the status register of slave SPI, SPI_FLASH_STATUS. Please do not
use it because the difference between communication format and data caching reading/writing might lead to
slave read/write error.

Espressif ! /!22 104 2016.06

!

4. SPI Communication User Guide

4.3.4. Slave SPI Communication Format Supported by Current API

The API function of ESP8266 SPI has a slave initialization mode which is compatible with
most of the devices in bytes. Set the slave communication format of 7 bits command+8
bits read/write data so that other master SPI devices could read and write bytes of slave
SPI via the 16 bits communication (or two times 8 bits with low lever CS). Please refer to
Section 4.4.2 for detailed information.

4.4. API Function Description of SPI Module
4.4.1. API Function Description of Master SPI

1. void spi_lcd_mode_init(uint8 spi_no)
Function:
Provide master SPI initialization program for driving the chromatic LCD TM035PDZV36.

2. void spi_lcd_9bit_write(uint8 spi_no,uint8 high_bit,uint8
low_8bit)

Function:
Provide master SPI transmitting program for driving the chromatic LCD TM035PDZV36.
The LCD module needs a 9 bits transmitting.

3. void spi_master_init(uint8 spi_no)
Function:
Normal master SPI initialization function. Baud rate is the 1/4 frequency of CPU clock. All
the master functions except spi_lcd_9bit_write can be used after initialization.

4. void spi_mast_byte_write(uint8 spi_no,uint8 data)
Function:
Master data sending of one byte.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

uint8 high_bit he 9’s data. 0 represents the 9’s 0 and other data
represents the 9’s 1.

uint8 low_8bit Low 8 bit data.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

Espressif ! /!23 104 2016.06

!

4. SPI Communication User Guide

5. void spi_byte_write_espslave(uint8 spi_no,uint8 data)
Function:
Write a Byte data for slave SPI.
As the slave is set at 7bits command+1bit address+8bits data, data sending requires 16
bits transmission and the first byte is 0b0000010+0 refer to 3.3 , i.e. 0x04. The second
byte is data sending. The actual transmitting waveform is illustrated in Figure 4-1.

!
Figure 4-1. The waveform of spi_byte_write_espslave written into slave ESP8266

6. void spi_byte_read_espslave(uint8 spi_no,uint8 *data)
Function:
Read one byte data from slave SPI and read other SPI slave devices. As the slave device is
set at 7bits command+1bit address+8bits data, data sending requires 16 bits transmission
and the first byte is 0b0000011+0 (refer to Section 4.3.3), i.e. 0x06. The second Byte is
data sending. The actual operating waveform is illustrated in Figure 4-2.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

uint8 data 8 bit data sending.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

uint8 data 8 bit data sending.

! Note:

Yellow line: CS, blue line: CLK, red line: MOSI, green line: MISO.

Espressif ! /!24 104 2016.06

!

4. SPI Communication User Guide

For other full duplex slave devices, 16 bits slave communication should be set. The
effective data should be put to the second byte of slave sending caching which will be
received by master ESP8266.

!
Figure 4-2. The slave waveform of spi_byte_read_espslave read from ESP8266

4.4.2. Master SPI API Function Description

1. void spi_slave_init(uint8 spi_no)
Function:

Initialization of slave SPI mode. Configure IO interface to SPI mode, enable SPI
transmission interruption and register the function spi_slave_isr_handler.
Communication format is set at 7bits command +1bit address+8bits read/write data.
Command and address combines to be high 8 bits and the address must be 0. According
to descriptions in 3.3, it supports the three master commands, i.e. 0x04 master write and
slave read, 0x06master write and slave read, 0x0c master and slave read/write. The
communication waveform is illustrated in Figure 4-1, 4-2.

Parameter Description

uint8 spi_no The number of SPI module. Only input SPI(0) and
HSPI(1). Any other inputs are invalid.

uint8 data 8 bit memory address data receiving.

! Note:

Yellow line: CS, blue line: CLK, red line: MOSI, green line: MISO.

Parameter Description

spi_no
The number of SPI module. ESP8266 processor has two SPI
modules with the same function, i.e. SPI and HSPI.
Optional values: SPI or HSPI.

Espressif ! /!25 104 2016.06

!

4. SPI Communication User Guide

2. spi_slave_isr_handler(void *para)
Function and trigger condition:

SPI interrupt processing function. Interruption will be triggered if the master operates the
correct transmission operation(read/write slave).
Code:

 //0x3ff00020 is isr flag register, bit4 is for spi isr,

 if(READ_PERI_REG(0x3ff00020)&BIT4){

 //following 3 lines is to close spi isr enable

 regvalue=READ_PERI_REG(SPI_FLASH_SLAVE(SPI));

 regvalue&=~(0x3ff);

 WRITE_PERI_REG(SPI_FLASH_SLAVE(SPI),regvalue);

 //os_printf("SPI ISR is trigged\n"); //debug code

 }else if(READ_PERI_REG(0x3ff00020)&BIT7){ //bit7 is for hspi
isr,

 //following 3 lines is to clear hspi isr signal

 regvalue=READ_PERI_REG(SPI_FLASH_SLAVE(HSPI));

 regvalue&=~(0x1f);

 WRITE_PERI_REG(SPI_FLASH_SLAVE(HSPI),regvalue);

 //when master command is write slave 0x04,

 //recieved data will be occur in register SPI_FLASH_C0's low 8
bit,

 //also if master command is read slave 0x06,

 //the low 8bit data in register SPI_FLASH_C0 will transmit to
master,

 //so prepare the transmit data in SPI_FLASH_C0' low 8bit,

 //if a slave transmission needs

 recv_data=(uint8)READ_PERI_REG(SPI_FLASH_C0(HSPI));

 /*put user code here*/

 // os_printf("recv data is %08x\n", recv_data);//debug code

 }else if(READ_PERI_REG(0x3ff00020)&BIT9){ //bit9 is for i2s
isr,

 }

Code description: As SPI store the FLASH chip by the read/write program, HSPI is used for
communication. For ESP8266 processor, there are multiple devices that share the
interruption function, including SPI module, HSPI module, I2S module, the 4’s, 7’s and 9’s
0x3ff00020 in the register.

Espressif ! /!26 104 2016.06

!

4. SPI Communication User Guide

As SPI module triggers transmission interruption frequently, 5 interruption source enabled
should be closed. The corresponding codes are as follows:

regvalue=READ_PERI_REG(SPI_FLASH_SLAVE(SPI));

regvalue&=~(0x3ff);

WRITE_PERI_REG(SPI_FLASH_SLAVE(SPI),regvalue);

If HSPI is triggered, software that resets the 5 interruption source is needed, in order to
avoid the repeated interruption function. The corresponding codes are as follows:

regvalue=READ_PERI_REG(SPI_FLASH_SLAVE(HSPI));

regvalue&=~(0x1f);

WRITE_PERI_REG(SPI_FLASH_SLAVE(HSPI),regvalue);

Data receiving and transmitting data share one register, SPI_FLASH_C0. The
corresponding codes of readout register are as follows:

recv_data=(uint8)READ_PERI_REG(SPI_FLASH_C0(HSPI));

recv_data is a global variable. Processing program defined by users can be inserted to
the tail of the sentence.

4.5. SPI Interface Description

4.5.1. Data Structure

4.5.1.1. Enumerated Values
SpiMode

SpiSubMode

⚠ Notice:
Interruption program is unfit for time-consuming processing code because long-time interruption program will
cause watchdog timer unable to realize normal reset and will also lead to unexpected restart of processor.

⚠ Notice:
The contents of this chapter are applicable only for Non-OS SDK V1.5.3 and above.

Value Description

SpiMode_Master Master mode

SpiMode_Slave Slave mode

Value Description

SpiSubMode_0 SPI_CPOL 0 SPI_CPHA 0

SpiSubMode_1 SPI_CPOL 0 SPI_CPHA 1

Espressif ! /!27 104 2016.06

!

4. SPI Communication User Guide

SpiSpeed

SpiBitOrder

SpiIntSrc

SpiPinCS

4.5.1.2. Structure

SpiSubMode_2 SPI_CPOL 1 SPI_CPHA 0

SpiSubMode_3 SPI_CPOL 1 SPI_CPHA 1

Value Description

Value Description

SpiSpeed_0_5MHz SPI speed at 0.5 MHz

SpiSpeed_1MHz SPI speed at 1 MHz

SpiSpeed_2MHz SPI speed at 2 MHz

SpiSpeed_5MHz SPI speed at 5 MHz

SpiSpeed_8MHz SPI speed at 8 MHz

SpiSpeed_10MHz SPI speed at 10 MHz

Value Description

SpiBitOrder_MSBFirst MSB first

SpiBitOrder_LSBFirst LSB first

Value Description

SpiIntSrc_TransDone Transmit complete interrupt

SpiIntSrc_WrStaDone Write status register interrupt

SpiIntSrc_RdStaDone Read status register interrupt

SpiIntSrc_WrBufDone Write data register interrupt

SpiIntSrc_RdBufDone Read data register interrupt

Value Description

SpiPinCS_0 CS0 pin

SpiPinCS_1 CS1 pin

SpiPinCS_2 CS2 pin

! Note:
For details that require attention, please refer to ESP8266 SDK API Guide.

Espressif ! /!28 104 2016.06

!

4. SPI Communication User Guide

SpiAttr
SPI parameters configuration

typedef struct

{

 SpiMode mode; ///< Master or slave mode

 SpiSubMode subMode; ///< SPI SPI_CPOL SPI_CPHA mode

 SpiSpeed speed; ///< SPI Clock

 SpiBitOrder bitOrder; ///< SPI bit order

} SpiAttr;

SpiData

Data structure of SPI transmission

typedef struct

{

 uint16_t cmd; ///< Command value

 uint8_t cmdLen; ///< Command byte length

 uint32_t *addr; ///< Point to address value

 uint8_t addrLen; ///< Address byte length

 uint32_t *data; ///< Point to data buffer

 uint8_t dataLen; ///< Data byte length.

} SpiData;

SpiIntInfo
Information structure of SPI interrupt configuration

typedef struct

{

 SpiIntSrc src; ///< Interrupt source

 void *isrFunc; ///< SPI interrupt callback function.

} SpiIntInfo;

4.5.1.3. Constants
ESP8266 Commands

Name Value Description

MASTER_WRITE_DATA_TO_SLAVE_CMD 2 Write data command in ESP8266 slave mode.

MASTER_READ_DATA_FROM_SLAVE_CMD 3 Read data command in ESP8266 slave mode.

MASTER_WRITE_STATUS_TO_SLAVE_CMD 1 Write status register command in ESP8266 slave
mode.

Espressif ! /!29 104 2016.06

!

4. SPI Communication User Guide

4.5.2. API Description

4.5.2.1. SPIInit
Description
SPI module initialization.
Function

void SPIInit(SpiNum spiNum, SpiAttr* pAttr);

Return value
Null

4.5.2.2. SPIMasterCfgAddr
Description
Configure address register.
Function

void SPIMasterCfgAddr(SpiNum spiNum, uint32_t addr);

Return value
Null

MASTER_READ_STATUS_FROM_SLAVE_CMD 4 Read status register command in ESP8266 slave
mode.

! Note:
For details that require attention, please refer to ESP8266 SDK API Guide.

Parameter Description

spiNum [in] choose SPI and HSPI.

pAttr [in] a pointer to SpiAttr structure.

! Notes:
• In slave mode, the default CMD length is 8 bits, ADDR length 8 bits, DATA length 32 bytes.

• No support currently for transmission with only DATA.

• The maximum DATA length is 64 bytes in a single transmission.

Parameter Description

spiNum [in] choose SPI and HSPI.

addr [in] address to set.

Espressif ! /!30 104 2016.06

!

4. SPI Communication User Guide

4.5.2.3. SPIMasterCfgCmd
Description
Configure SPI command register.
Function

Void SPIMasterCfgCmd(SpiNum spiNum, uint32_t cmd);

Return value
Null

4.5.2.4. SPIMasterSendData
Description
Master sends data according to the pInData buffer.
Function

int SPIMasterSendData(SpiNum spiNum, SpiData* pInData);

Return value
• 0: Success

• Others: Failure

! Notes:
• If the address length is over 32 bits, the user needs to configure the SPI_WR_STATUS register.

• Address transmission is in high-byte order.

Parameter Description

spiNum [in] choose SPI and HSPI.

cmd [in] command value to set.

! Note:
CMD length is up to 16 bits and the transmission is in low-byte order.

Parameter Description

spiNum [in] choose SPI and HSPI.

pInData [in] a pointer to SpiData structure. The command,
address, data buffer and length should be specified.

! Note:
DATA transmission is in low-byte order.

Espressif ! /!31 104 2016.06

!

4. SPI Communication User Guide

4.5.2.5. SPIMasterRecvData
Description
Master receives data.

Function
int SPIMasterRecvData(SpiNum spiNum, SpiData* pOutData);

Return value
• 0: Success
• Others: Failure

4.5.2.6. SPISlaveSendData
Description
Upload data to SPI W8 ~ W15.
Function

int SPISlaveSendData(SpiNum spiNum, uint32_t *pInData, uint8_t
inLen);

Return value
• 0: Success

• Others: Failure

4.5.2.7. SPISlaveRecvData
Description
Slave receives data.

Parameter Description

spiNum [in] choose SPI and HSPI.

pOutData [in] a pointer to SpiData structure. The command, address, data buffer
and length should be specified.

Parameter Description

spiNum [in] choose SPI and HSPI.

pInData [in] a pointer to buffer.

inLen [in] buffer length.

! Notes:
• This function is only used to upload the data to SPI W8 ~ W15. Upon receiving

MASTER_READ_DATA_FROM_SLAVE_CMD, ESP8266 will automatically transmit data.

• The default value is 32 bytes, with 64 bytes the maximum.

Espressif ! /!32 104 2016.06

!

4. SPI Communication User Guide

Function

int SPISlaveRecvData(SpiNum spiNum);

Return value
• 0: Success

• Others: Failure
4.5.2.8. SPIMasterSendStatus

Description
Master writes data to slave’s status register.
Function

void SPIMasterSendStatus(SpiNum spiNum, uint8_t data);

Return value
Null

4.5.2.9. SPIMasterRecvStatus
Description
Master reads data from slave’s status register.

Function
int SPIMasterRecvStatus(SpiNum spiNum);

Return value
• 0: Success
• Others: Failure

Parameter Description

spiNum [in] choose SPI and HSPI.

Parameter Description

spiNum [in] choose SPI and HSPI.

data [in] data to write into status register.

Parameter Description

spiNum [in] choose SPI and HSPI.

! Note:
The status register value of the slave is stored in SPI buffer W0.

Espressif ! /!33 104 2016.06

!

4. SPI Communication User Guide

4.5.2.10.SPICsPinSelect
Description
Select CS pin.

Function
void SPICsPinSelect(SpiNum spiNum, SpiPinCS pinCs);

Return value

Null

4.5.2.11.SPIIntCfg
Description
Set interrupt source and terminal callback function.
Function

void SPIIntCfg(SpiNum spiNum, SpiIntInfo *pIntInfo)

Return value
Null

4.5.2.12.SPIIntEnable
Description
Set the available interrupt source.
Function

void SPIIntEnable(SpiNum spiNum, SpiIntSrc intSrc);

Parameter Description

spiNum [in] choose SPI and HSPI.

pinCs [in] pin to select.

! Note:
CS Pin can only be changed after transmission ends.

Parameter Description

spiNum [in] choose SPI and HSPI.

pIntInfo [in] a pointer to SpiIntInfo with interrupt source and interrupt callback function.

Parameter Description

spiNum [in] choose SPI and HSPI.

intSrc [in] interrupt to set, please refer to Section 4.5.1.1 SpiIntSrc.

Espressif ! /!34 104 2016.06

!

4. SPI Communication User Guide

Return value
Null

4.5.2.13.SPIIntDisable
Description
Set disable interrupt source.
Function

void SPIIntDisable(SpiNum spiNum, SpiIntSrc intSrc);

Return value
Null

4.5.2.14.SPIIntClear
Description
Clear all interrupt sources.
Function

void SPIIntClear(SpiNum spiNum);

Return value
Null

4.5.3. SPI_Test Demo

The communication format is CMD + ADDR + Data when ESP8266 is in slave mode. The
transmission only with DATA is not supported currently. As the slave, ESP8266 can
respond to different commands. The CMD default values are as follows:

• CMD = 2, write data to the ESP8266 data register W0 ~ W15;

• CMD = 3, read data from the ESP8266 data register

• CMD = 1, write data to the ESP8266 status register;
• CMD = 4, read data from the ESP8266 status register.

Spi_test demo is based on the SPI communication between two ESP8266. The
communication test followed the steps below.

1. Master sends 32-byte data to slave.
2. Master receive data from slave.

Parameter Description

spiNum [in] choose SPI and HSPI.

intSrc [in] interrupt to set, please refer to Section 4.5.1.1 SpiIntSrc.

Parameter Description

spiNum [in] choose SPI and HSPI.

Espressif ! /!35 104 2016.06

!

4. SPI Communication User Guide

3. Master read data from the status register of the slave.
4. Master writes data to the status register of the slave.

The slave will receive interrupts in order from SPI_SLV_WR_BUF_DONE,
SPI_SLV_RD_BUF_DONE, SPI_SLV_RD_STA_DONE, SPI_SLV_WR_STA_DONE.

4.5.3.1. Hardware Connection

!
Figure 4-3. Test Demo Hardware Connection

Figure 4-3 shows the test demo hardware connection. The master and the slave are
connected via HSPI. MTCK pin is SPI. MOSI, MTDI pin is SPI MISO, MTMS pin is SPI Clock
and MTMO pin is SPI CS pin.

4.5.3.2. Program Introduction
spi_master_test
Master uses SPI buffer starting from W0.

void ICACHE_FLASH_ATTR spi_master_test()

{

 SpiAttr hSpiAttr;

 hSpiAttr.bitOrder = SpiBitOrder_MSBFirst;

 hSpiAttr.speed = SpiSpeed_10MHz;

 hSpiAttr.mode = SpiMode_Master;

 hSpiAttr.subMode = SpiSubMode_0;

 // Init HSPI GPIO

 WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105);

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2);//configure io to spi
mode

ESP8266 Master

MTDI
MTCK
MTMS
MTDO

MTDI
MTCK
MTMS
MTDO

ESP8266 Slave

Espressif ! /!36 104 2016.06

!

4. SPI Communication User Guide

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2);//configure io to spi
mode

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2);//configure io to spi
mode

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, 2);//configure io to spi
mode

 SPIInit(SpiNum_HSPI, &hSpiAttr);

 uint32_t value = 0xD3D4D5D6;

 uint32_t sendData[8] ={ 0 };

 SpiData spiData;

 os_printf("\r\n ============= spi init master =============
\r\n");

// Test 8266 slave.Communication format: 1byte command + 1bytes
address + x bytes Data.

 os_printf("\r\n Master send 32 bytes data to slave(8266)\r\n");

 os_memset(sendData, 0, sizeof(sendData));

 sendData[0] = 0x55565758;

 sendData[1] = 0x595a5b5c;

 sendData[2] = 0x5d5e5f60;

 sendData[3] = 0x61626364;

 sendData[4] = 0x65666768;

 sendData[5] = 0x696a6b6c;

 sendData[6] = 0x6d6e6f70;

 sendData[7] = 0x71727374;

 spiData.cmd = MASTER_WRITE_DATA_TO_SLAVE_CMD;

 spiData.cmdLen = 1;

 spiData.addr = &value;

 spiData.addrLen = 4;

 spiData.data = sendData;

 spiData.dataLen = 32;

 SPIMasterSendData(SpiNum_HSPI, &spiData);

Espressif ! /!37 104 2016.06

!

4. SPI Communication User Guide

 os_printf("\r\n Master receive 24 bytes data from slave(8266)\r
\n");

 spiData.cmd = MASTER_READ_DATA_FROM_SLAVE_CMD;

 spiData.cmdLen = 1;

 spiData.addr = &value;

 spiData.addrLen = 4;

 spiData.data = sendData;

 spiData.dataLen = 24;

 os_memset(sendData, 0, sizeof(sendData));

 SPIMasterRecvData(SpiNum_HSPI, &spiData);

 os_printf(" Recv Slave data0[0x%08x]\r\n", sendData[0]);

 os_printf(" Recv Slave data1[0x%08x]\r\n", sendData[1]);

 os_printf(" Recv Slave data2[0x%08x]\r\n", sendData[2]);

 os_printf(" Recv Slave data3[0x%08x]\r\n", sendData[3]);

 os_printf(" Recv Slave data4[0x%08x]\r\n", sendData[4]);

 os_printf(" Recv Slave data5[0x%08x]\r\n", sendData[5]);

 // read the value of slave status register

 value = SPIMasterRecvStatus(SpiNum_HSPI);

 os_printf("\r\n Master read slave(8266) status[0x%02x]\r\n",
value);

 // write 0x99 into the slave status register

 SPIMasterSendStatus(SpiNum_HSPI, 0x99);

 os_printf("\r\n Master write status[0x99] to slavue(8266).\r\n");

 SHOWSPIREG(SpiNum_HSPI);

// Test others slave.Communication format:0bytes command + 0 bytes
address + x bytes Data

#if 0

 os_printf("\r\n Master send 4 bytes data to slave\r\n");

 os_memset(sendData, 0, sizeof(sendData));

 sendData[0] = 0x2D3E4F50;

 spiData.cmd = MASTER_WRITE_DATA_TO_SLAVE_CMD;

 spiData.cmdLen = 0;

Espressif ! /!38 104 2016.06

!

4. SPI Communication User Guide

 spiData.addr = &addr;

 spiData.addrLen = 0;

 spiData.data = sendData;

 spiData.dataLen = 4;

 SPIMasterSendData(SpiNum_HSPI, &spiData);

 os_printf("\r\n Master receive 4 bytes data from slaver\n");

 spiData.cmd = MASTER_READ_DATA_FROM_SLAVE_CMD;

 spiData.cmdLen = 0;

 spiData.addr = &addr;

 spiData.addrLen = 0;

 spiData.data = sendData;

 spiData.dataLen = 4;

 os_memset(sendData, 0, sizeof(sendData));

 SPIMasterRecvData(SpiNum_HSPI, &spiData);

 os_printf(" Recv Slave data[0x%08x]\r\n", sendData[0]);

#endif

}

spi_slave_test
The SPI buffer used by the slave starts from W8. The program configures SPI mode first
and initializes GPIO. Then it receives the data from the master and uploads the data to SPI
buffer, waiting for the master to read. Finally, the program will modify the value of the status
register.

void ICACHE_FLASH_ATTR spi_slave_test()

{

 // SPI initialization configuration, speed = 0 in slave mode

 SpiAttr hSpiAttr;

 hSpiAttr.bitOrder = SpiBitOrder_MSBFirst;

 hSpiAttr.speed = 0;

 hSpiAttr.mode = SpiMode_Slave;

 hSpiAttr.subMode = SpiSubMode_0;

 // Init HSPI GPIO

 WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105);

Espressif ! /!39 104 2016.06

!

4. SPI Communication User Guide

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2);//configure io to spi
mode

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2);//configure io to spi
mode

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2);//configure io to spi
mode

 PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, 2);//configure io to spi
mode

 os_printf("\r\n ============= spi init slave =============\r\n");

 SPIInit(SpiNum_HSPI, &hSpiAttr);

 // Set spi interrupt information.

 SpiIntInfo spiInt;

 spiInt.src = (SpiIntSrc_TransDone

 | SpiIntSrc_WrStaDone

 |SpiIntSrc_RdStaDone

 |SpiIntSrc_WrBufDone

 |SpiIntSrc_RdBufDone);

 spiInt.isrFunc = spi_slave_isr_sta;

 SPIIntCfg(SpiNum_HSPI, &spiInt);

 // SHOWSPIREG(SpiNum_HSPI);

 SPISlaveRecvData(SpiNum_HSPI);

 uint32_t sndData[8] = { 0 };

 sndData[0] = 0x35343332;

 sndData[1] = 0x39383736;

 sndData[2] = 0x3d3c3b3a;

 sndData[3] = 0x11103f3e;

 sndData[4] = 0x15141312;

 sndData[5] = 0x19181716;

 sndData[6] = 0x1d1c1b1a;

 sndData[7] = 0x21201f1e;

// write 8 word (32 byte) data to SPI buffer W8~W15

SPISlaveSendData(SpiNum_HSPI, sndData, 8);

// set the value of status register

Espressif ! /!40 104 2016.06

!

4. SPI Communication User Guide

 WRITE_PERI_REG(SPI_RD_STATUS(SpiNum_HSPI), 0x8A);

 WRITE_PERI_REG(SPI_WR_STATUS(SpiNum_HSPI), 0x83);

}

spi_slave_isr_sta

// SPI interrupt callback function.

void spi_slave_isr_sta(void *para)

{

 uint32 regvalue;

 uint32 statusW, statusR, counter;

 if (READ_PERI_REG(0x3ff00020)&BIT4) {

 //following 3 lines is to clear isr signal

 CLEAR_PERI_REG_MASK(SPI_SLAVE(SpiNum_SPI), 0x3ff);

 } else if (READ_PERI_REG(0x3ff00020)&BIT7) { //bit7 is for hspi
isr,

 regvalue = READ_PERI_REG(SPI_SLAVE(SpiNum_HSPI));

 os_printf("spi_slave_isr_sta SPI_SLAVE[0x%08x]\n\r",
regvalue);

 SPIIntClear(SpiNum_HSPI);

 SET_PERI_REG_MASK(SPI_SLAVE(SpiNum_HSPI), SPI_SYNC_RESET);

 SPIIntClear(SpiNum_HSPI);

 SPIIntEnable(SpiNum_HSPI, SpiIntSrc_WrStaDone

 | SpiIntSrc_RdStaDone

 | SpiIntSrc_WrBufDone

 | SpiIntSrc_RdBufDone);

 if (regvalue & SPI_SLV_WR_BUF_DONE) {

 // User can get data from the W0~W7

 os_printf("spi_slave_isr_sta : SPI_SLV_WR_BUF_DONE\n\r");

 } else if (regvalue & SPI_SLV_RD_BUF_DONE) {

 // TO DO

 os_printf("spi_slave_isr_sta : SPI_SLV_RD_BUF_DONE\n\r");

 }

 if (regvalue & SPI_SLV_RD_STA_DONE) {

 statusR = READ_PERI_REG(SPI_RD_STATUS(SpiNum_HSPI));

Espressif ! /!41 104 2016.06

!

4. SPI Communication User Guide

 statusW = READ_PERI_REG(SPI_WR_STATUS(SpiNum_HSPI));

 os_printf("spi_slave_isr_sta : SPI_SLV_RD_STA_DONE[R=0x
%08x,W=0x%08x]\n\r", statusR,

 statusW);

 }

 if (regvalue & SPI_SLV_WR_STA_DONE) {

 statusR = READ_PERI_REG(SPI_RD_STATUS(SpiNum_HSPI));

 statusW = READ_PERI_REG(SPI_WR_STATUS(SpiNum_HSPI));

 os_printf("spi_slave_isr_sta : SPI_SLV_WR_STA_DONE[R=0x
%08x,W=0x%08x]\n\r", statusR, tatusW);

 }

 if ((regvalue & SPI_TRANS_DONE) && ((regvalue & 0xf) == 0)) {

 os_printf("spi_slave_isr_sta : SPI_TRANS_DONE\n\r");

 }

 SHOWSPIREG(SpiNum_HSPI);

 }

}

4.5.3.3. Running Log and Waveform Graphs
ESP8266 Master
Master log is as shown in Figure 4-4.

Espressif ! /!42 104 2016.06

!

4. SPI Communication User Guide

!
Figure 4-4. Master Log

In Figure 4-5, the yellow area is the command 0x02 which means the master writes data to
the slave, the red area is the address register 0x00, and the green area is the data written,
with the low byte being transmitted first.

!
Figure 4-5. Waveform Graph 1

Espressif ! /!43 104 2016.06

!

4. SPI Communication User Guide

In Figure 4-6, the yellow area is the command 0x03 which means the master reads data
from the slave, the red area is the address register 0x00, and the green MISO area is the
data in SPI buffer.

!

Figure 4-6. Waveform Graph 2

In Figure 4-7, the yellow area is the command 0x04 which means the master reads data
from the slave, the red area is the address register 0x00, and the green MISO area is the
value of the slave's status register.

!
Figure 4-7. Waveform Graph 3

In Figure 4-8, the yellow area is the command 0x01 which means the master writes to the
slave's status register, the purple area is the value written to the slave's status register.

Espressif ! /!44 104 2016.06

!

4. SPI Communication User Guide

!
Figure 4-8. Waveform Graph 4

ESP8266 Slave
Slave log is as shown in Figure 4-9.

!
Figure 4-9. Slave Log

Espressif ! /!45 104 2016.06

!

5. SPI Overlap & Display Application Guide

5. SPI Overlap & Display
Application Guide

5.1. Functional Overview
The Overlap mode of ESP8266 Host SPI allows for two SPI modes (SPI and HSPI) to reuse
the same IO interface (such as SCLK, MOSI and MISO) for the operation of multiple slave
SPI devices. The hardware supports 3 line chip selection. If there are additional 3 slave
devices, GPIO can be adopted as CS signal for the communication of multiple slave device.

Generally speaking, in order to ensure that the CPU can be running at high efficiency, SPI
module is used to read the running program from external Flash to CPU CACHE, while
HSPI module is used to operate slave devices of other users. Under Overlap mode, the
hardware will automatically arbitrate the control of two SPI modules to the current pin signal
for time-sharing application. If the software starts HSPI communication, the arbitration
signal will delay the start of HSPI block communication via the working of SPI. The
arbitration signal is then allowed to start the communication of HSPI IO interface after SPI
finishes reading the program codes for communication. This is illustrated in Figure 1. For
user software, only a switch of the corresponding CS signal before the start of
communicator is needed. Other operations are of no difference to the use of single HSPI
communication.

!
Figure 5-1. SPI Overlap Block Diagram

Espressif ! /!46 104 2016.06

!

5. SPI Overlap & Display Application Guide

Please refer to Chapter 4 EPS8266 SPI Communication User Guide for more
information about the application method of Host SPI Module. The configuration method of
Overlap mode is discussed in detail below.

5.2. Hardware Connection of SPI Overlap Mode
Pins including SD_CLK, SD_DATA0, and SD_DATA1 correspond to pins SCLK, MISO and
MOSI in two SPI modes, while pins SD_CMD, U0TXD, and GPIO0 correspond to chip
selection (CS) signals CS0, CS1, and CS2 respectively. Generally, SD_CMD connects to
the CS signal of an external Flash, while U0TXD and GPIO0 can be connect with the CS
signals of two slave devices. It can connect to the CS signal of two salve devices. Besides,
HSPI can read and write Flash data through enabled CS0, independent of SPI (e.g. Read
some pre-stored user data).
If more SPI devices are needed, device can be selected via other GPIOs, while CS0, CS1,
and CS2 are blocked by the configuration register.

5.3. API Description of SPI Overlap Mode
1. void hapi_overlap_init(void)

Function:
After SPI Overlap mode has been initialized, and SPI and HSPI interfaces are invoked,
interfaces including CLK, MOSI, and MISO can be shared with SPI and HSPI interfaces to
communicate with different devices. By default, CS2 is the CS signal of HSPI interface.
Please be careful when switching CS signals during communication.
Location:
\app\user\user_main.c in the DEMO.

2. SELECT_OLED(),SELECT_TFT()
Function:
Switch the CS pin of HSPI and OLED in DEMO connects to CS2. TFTLCD connects to
CS1. Before the start of HSPI communication, macro needs to be called. The macro
definition is as follows:

#define SELECT_OLED() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CS2_DIS);\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS0_DIS |SPI_CS1_DIS)

#define SELECT_TFT() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CS1_DIS);\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS0_DIS |SPI_CS2_DIS)

Therefore, users can change the macro definition. For example, the following macro can be
defined if HSPI is used to the operate Flash:

#define SELECT_FLASH() CLEAR_PERI_REG_MASK(SPI_PIN(HSPI),
SPI_CS0_DIS);\

Espressif ! /!47 104 2016.06

!

5. SPI Overlap & Display Application Guide

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS1_DIS |SPI_CS2_DIS)

If normal GPIO is used for CS, the following is needed:

#define DISABLE_CS()\

SET_PERI_REG_MASK(SPI_PIN(HSPI), SPI_CS0_DIS |SPI_CS1_DIS |
SPI_CS2_DIS)

Location:

\app\include\user_lcd.h in the DEMO.
Please refer to Chapter 4 EPS8266 SPI Communication User Guide for more
information about other host SPI communication.

5.4. Display Screen Console Program DEMO
The DEMO is used to print simple strings on display screens, including LCD for parameter
display and debug printing. DEMO driver supports two screens currently, i.e. 3.5-inch
TM035PDZV36 480*320 TFT colored LCD and Zhong JY. Tech 1.3-inch 128*64OLED. The
driver programs can communicate with the display screen via ESP8266 HSPI interface
under Overlap mode.
Under SPI Overlap mode, the two screens and 8266 external program flash chip share
SCLK, MOSI and MISO signals on the SPI bus. Different CS signals are used in different
device.

5.4.1. Connection Description

Zhong JY. Tech 1.3-inch OLED Connection
The signals in OLED, i.e. SCLK, MOSI, CS, DC, RESET connects to the pins in 8266, i.e.
SD_CLK, SD_DATA1, GPIO0, MTCK, GPIO5 respectively. The VCC in OLED and GND
connects to 3.3V network and GND on DEMO board.
Tian Ma 3.5-inch TFT LCD

The signals in TFT, i.e. SCLK, MOSI, CS, RESET connects to the pins in 8266, i.e.
SD_CLK, SD_DATA1, U0TXD, GPIO5 respectively. The VCC in OLED and GND connects
to 3.3V network and GND on DEMO board.

5.4.2. API Function Description
1. void screen_init(void)

Function:

Display screen initialization program. Call the function after it is enabled.
Location:
\app\user\user_lcd.c and \app\include\user_lcd.h

Espressif ! /!48 104 2016.06

!

5. SPI Overlap & Display Application Guide

2. void scr_param_config(uint8 bkg_color,uint8 ft_color,uint8
ft_size, uint8 scr_size_clr_row, uint8 scr_size_x,uint8
scr_size_y)

Function:

Display parameter for the global variable configuration string of the scr_font_param
structure.
Parameters:

Location:

\app\user\user_lcd.c and \app\include\user_lcd.h, call in the function screen_init.
3. void scr_printf(const char* fmt, ...)

Function:
used for standard printing of functions displayed on the screen, similar to the using method
of printf in C programming language.

Parameters:
• const char* fmt—— shows the character string.
• ...—— variable parameters that needs to be displayed in the corresponding string.

Location:
\app\user\user_lcd.c and \app\include\user_lcd.h

4. void at_lcd_print(uint8* str)
Function:
shows the assigned character string displayed on the screen order.
Parameters:

uint8* str—— the starting address of string array.

Parameter Description

uint8 bkg_color Background color of TFT can change between BLACK_8COLOR and
WHITE_8COLOR. Do not use OLED display screen.

uint8 ft_color Font color of TFT can change between BLACK_8COLOR and
WHITE_8COLOR. Do not use OLED display screen.

uint8 ft_size
Font size with 12*6 ASCII character. The parameter is the multiple of pixels
under the character.
For example, if ft_size is 2, the actual font size is 24*12. Input non-zero value.

uint8 scr_size_clr_row Rows should be removed after the screen is refreshed.Input non-zero value.

uint8 scr_size_x Each line shows the character number.Please note that it should not exceed
the pixel range of the screen.

uint8 scr_size_y This parameter shows the character lines. Please note that it should not
exceed the pixel range of the screen.

Espressif ! /!49 104 2016.06

!

5. SPI Overlap & Display Application Guide

5.4.3. Pre-compiled Macro Setting

#define OLED_SCR 1

#define TFT_SCR 1

#define OVERLAP_TEST 0

Location:

\app\include\user_lcd.h
OLED_SCR and TFT_SCR can control the debugging characters displayed on the
corresponding screen. The program supports the same character shown in two screens.
Overlap_TEST is used for SPI Overlap test when TFT is used to display image. TFT should
be set at 0 as it conflicts with the displayed characters.

Espressif ! /!50 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

6. SPI Wi-Fi Passthrough 1-
Interrupt Mode

6.1. Functional Overview
This protocol uses the ESP8266 slave mode to communicate with other processor's SPI
master. Signal line No.5 is used to implement this protocol. Apart from signal line No.4
needed for standard SPI, signal line No.1 is also needed to inform the master of the update
of the slave status register.

6.2. ESP8266 SPI Slave Protocol Format
6.2.1. SPI Slave Clock Polarity Configuration

Clock polarity of the master clock which communicates with the ESP8266 SPI slave should
be set to be low in the idle state, sampling for rising edge, and changing data for falling
edge. When it reads/writes 34 bytes at a time, or when it reads 2 bytes at a time to get
information of the slave status register, selection signal CS must be kept at low level. If CS
is pulled high when data is being sent, the slave interior status will be reset.

6.2.2. Communication Format Supported by The SPI Slave

The ESP8266 SPI slave communication format should be command+address+read/write
data or command+slave status value. To be specific:

• Command: length, 8 bits; master output slave input (MOSI).

0x02 is the data sent by the master and received by the slave. The master writes 32 bytes
of data through MOSI into SPI_W7 in corresponding register SPI_W0 of the slave data
buffer.
0x03 is the data received by the master and sent by the slave. 32 bytes of data from
corresponding register of the slave buffer between SPI_FLASH_C8 and SPI_FLASH_C15
are sent to the master through MISO.

0x04 and 0x05 can read the lower 8 bits of SPI_FLASH_STATUS in the slave status
register.

• address: length, 8 bits; master output slave input (MOSI). The address content must
be 0.

⚠ Notice:
Other values are used to read/write the SPI slave status register SPI_FLASH_STATUS. Their communication
formats are different from those of the read/write buffer, using them will cause read/write errors for the slave.
So users should not use these values.

Espressif ! /!51 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

• read/write data: length, 256 bits (32 Bytes). Master output slave input (MOSI) the
0x02 command, or master input slave output (MISO) the 0x03 command.

• slave status: length, 8 bits; master input slave output (MISO), use 0x04 or 0x05 to
read the slave communication status.

6.3. Slave Status Definition and Line Breakage
6.3.1. Status Definition

The slave status contains 8 bits:

• wr_busy, bit0: 1, slave write buffer is full, and is processing the data received; 0,
slave write buffer is empty, new data can be written in.

• rd_empty, bit1: 1, slave read buffer is empty, no data has been updated; 0, there is
new data in the buffer for the master to read.

• comm_cnt, bit2-4: count value of the read/write communication. Each time when
the slave SPI read/write buffer is interrupted, this 3-bit count value will increase by 1.
Therefore, the master can judge whether the readwrite communication has been
recognised by the slave, and whether the communication is completed.

6.3.2. GPIO0 Line Breakage

When there are changes in the slave status register, interrupt line GPIO0 will be set to be 1;
when the master uses 0x04, 0x05 to read the slave status register, interrupt line GPIO0 will
be set 0.

6.4. ESP8266 SPI Slave API Functions

//SPI protocol selection

#define TWO_INTR_LINE_PROTOCOL 0

#define ONE_INTR_LINE_31BYTES 0

#define ONE_INTR_LINE_WITH_STATUS 1

The interrupt response function will use spi_slave_isr_sta(void *para).

⚠ Notice:
When the master completed a read/write communication, if it wants to conduct the next read operation,
rd_empty must be 0, and comm_cnt value must be the previous value +1; if it wants to conduct the next
write operation, wr_busy must be 0, and comm_cnt value must be the previous value +1.

⚠ Notice:
Configure in spi.h if SPI status register single-threaded passthrough protocol is used.

Espressif ! /!52 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

1. void spi_slave_init(uint8 spi_no)
Function:

Initialise the SPI slave mode, set the IO interface to SPI mode, start the SPI transmission
interrupt, and register spi_slave_isr_handler. The communication format is set to be 8 bits
command + 8 bits address + 256 bits (32 Bytes) read/write data.
Parameters:

spi_no: number of the SPI module. The ESP8266 processor has two SPI modules (SPI
and HSPI) with the same functions.
Value to be selected: SPI or HSPI.

2. spi_slave_isr_sta(void *para)
Function and trigger condition:
It's the SPI interrupt handler function. When the master successfully reads data from or
writes data into the slave, the interrupt will be triggered. Users can revise the interrupt
service routine in order to attain the communication functions they need. The code is
shown as below:

struct spi_slave_status_element

{

 uint8 wr_busy:1;

 uint8 rd_empty :1;

 uint8 comm_cnt :3;

 uint8 res :3;

};

union spi_slave_status

{

 struct spi_slave_status_element elm_value;

 uint8 byte_value;

};

void spi_slave_isr_sta(void *para)

{

 uint32 regvalue,calvalue;

 uint32 recv_data,send_data;

 union spi_slave_status spi_sta;

 if(READ_PERI_REG(0x3ff00020)&BIT4){

 //following 3 lines is to clear isr signal

Espressif ! /!53 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

 CLEAR_PERI_REG_MASK(SPI_SLAVE(SPI), 0x3ff);

 }else if(READ_PERI_REG(0x3ff00020)&BIT7){ //bit7 is for hspi
isr,

 // record the interrupt status

 regvalue=READ_PERI_REG(SPI_SLAVE(HSPI));

 //***********interrupt handler flag, end this
passthrough************//

 CLEAR_PERI_REG_MASK(SPI_SLAVE(HSPI),

 SPI_TRANS_DONE_EN|

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN);

 SET_PERI_REG_MASK(SPI_SLAVE(HSPI), SPI_SYNC_RESET);

 CLEAR_PERI_REG_MASK(SPI_SLAVE(HSPI),

 SPI_TRANS_DONE|

 SPI_SLV_WR_STA_DONE|

 SPI_SLV_RD_STA_DONE|

 SPI_SLV_WR_BUF_DONE|

 SPI_SLV_RD_BUF_DONE);

 SET_PERI_REG_MASK(SPI_SLAVE(HSPI),

 SPI_TRANS_DONE_EN|

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN);

 //
***//

 /****************master writes interrupt
handler***************/

Espressif ! /!54 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

 if(regvalue&SPI_SLV_WR_BUF_DONE){

 //*****complete the write operation, wr_busy set to be
1, communication count increases by 1****//

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0xff;

 spi_sta.elm_value.wr_busy=1;

 spi_sta.elm_value.comm_cnt++;

 WRITE_PERI_REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

 //**//

 //*******move the data received by the register
into the memory******//

 idx=0;

 while(idx<8){

 recv_data=READ_PERI_REG(SPI_W0(HSPI)+
(idx<<2));

 //os_printf("rcv data : 0x%x \n
\r",recv_data);

 spi_data[idx<<2] = recv_data&0xff;

 spi_data[(idx<<2)+1] =
(recv_data>>8)&0xff;

 spi_data[(idx<<2)+2] =
(recv_data>>16)&0xff;

 spi_data[(idx<<2)+3] =
(recv_data>>24)&0xff;

 idx++;

 }

 //***********************************//

 //************data transmission completed, wr_busy
set to be 0*************//

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0xff;

 spi_sta.elm_value.wr_busy=0;

 WRITE_PERI_REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

 //
**//

 /***testing part, it can be revised. This part of
the program is used to copy the data read to the read buffer**/

Espressif ! /!55 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

 for(idx=0;idx<8;idx++)

 {

 WRITE_PERI_REG(SPI_W8(HSPI)+(idx<<2),

READ_PERI_REG(SPI_W0(HSPI)+(idx<<2)));

 }

 /
**/

 /***testing part, it can be revised. rd_empty is
set to be 0, the slave can read**/

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0xff;

 spi_sta.elm_value.rd_empty=0;

 WRITE_PERI_REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

 /**/

 GPIO_OUTPUT_SET(0, 1); // interrupt line set to be
1, inform the master to read the slave status

 /****************master reads the interrupt
handler***************/

 }else if(regvalue&SPI_SLV_RD_BUF_DONE){

 //*****complete the read operation, rd_empty set to
be 1, communication count increases by 1****//

spi_sta.byte_value=READ_PERI_REG(SPI_STATUS(HSPI))&0xff;

 spi_sta.elm_value.comm_cnt++;

 spi_sta.elm_value.rd_empty=1;

 WRITE_PERI_REG(SPI_STATUS(HSPI),
(uint32)spi_sta.byte_value);

 GPIO_OUTPUT_SET(0, 1); // interrupt line set to be
1, inform the master to read the slave status

 }

 /****************master reads status interrupt
handler***************/

 if(regvalue&SPI_SLV_RD_STA_DONE){

 GPIO_OUTPUT_SET(0,0); // interrupt line set to be
0, the master has read the status

 }

Espressif ! /!56 104 2016.06

!

6. SPI Wi-Fi Passthrough 1-Interrupt Mode

 }else if(READ_PERI_REG(0x3ff00020)&BIT9){ //bit7 is for i2s isr,

 }

}  

Espressif ! /!57 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

7. SPI Wi-Fi Passthrough 2-
Interrupt Mode

7.1. Functional Overview
This protocol uses the ESP8266 slave mode to communicate with other processor's SPI
masters. Signal line No.6 is used to implement this protocol. Apart from signal line No.4
needed for standard SPI, signal line No.2 is also needed to inform the master of information
of the slave receive and send buffer status, so as to control the data flow.

7.2. ESP8266 SPI Slave Protocol Format
7.2.1. SPI Slave Clock Polarity Configuration

Clock polarity of the master clock which communicates with the ESP8266 SPI slave should
be set to be low in the idle state, sampling for rising edge, and changing data for falling
edge. When it reads/writes 34 Bytes at a time, selection signal CS must be kept at low
level. If CS is pulled high when data is being sent, the slave interior status will be reset.

7.2.2. Communication Format Supported by The SPI Slave

The ESP8266 SPI slave communication format is similar to that of the master, it should be
command + address+ read/write data. To be specific:

• command: length, 8 bits; master output slave input (MOSI).

0x02 is the data sent by the master and received by the slave. The host writes 32 Bytes of
data through MOSI into SPI_W0 to SPI_W7 in the corresponding register of the slave data
buffer.

0x03 is the data received by the master and sent by the slave. 32 Bytes of data from
corresponding register of the slave buffer between SPI_W8 and SPI_W15 are sent to the
master through MISO.

• address: length, 8 bits; master output slave input (MOSI). The address content must
be 0.

• read/write data: length, 256 bits (32 Bytes). Master output slave input (MOSI) the
0x02 command, or master input slave output (MISO) the 0x03 command.

⚠ Note:
other values are used to read/write the SPI slave status register SPI_STATUS. Their communication formats
are different from those of the read/write buffer, using them will cause read/write errors for the slave. So users
should not use these values.

Espressif ! /!58 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

7.3. Instruction on The Data Flow Control Line
The ESP8266 uses 2 GPIOs to output the slave receive buffer status and send buffer
status.

7.3.1. GPIO0 MOSI Buffer Status

When GPIO0 enters the slave receive interrupt, the interrupt program will resume the SPI
slave to communicable status in order to prepare for the next communication. Then, GPIO0
will be written to be low level, data received will be processed, and GPIO0 will be written to
be high level to exit the interrupt program. Therefore:

• Between the master enables an SPI write communication to GPIO0 generates a
falling edge, if users enable any other SPIs, communication errors will occur.

• When GPIO0 is at low level, if the master enables any SPI to write (0x02 command),
SPI_W0 to SPI_W7 in the slave receive register will be covered. But if there is
effective data in the slave send register (refer to GPIO2 instructions), when GPIO0 is
at low level, master can be started to read (0x03 command) data between SPI_W8 to
SPI_W15 in the slave send register.

• If GPIO0 shifts from low level to high level, it means the slave has processed data
from SPI_W0 to SPI_W7 in the receive register, and the master can start another
write operation (0x02 command).

7.3.2. GPIO2 Master Receives The Slave Send Buffer Status

GPIO2 activities are slightly different from those of GPIO0. In the slave send interrupt, the
interrupt program will resume the SPI slave to communicable status in order to prepare for
the next communication. Then, GPIO0 will be written to be low level, and quit the interrupt
program. After that, if data is sent to the ESP8266 through WiFi and is required to be
forwarded by SPI, ESP8266 software will be written into SPI_W8 to SPI_W15, and GPIO2
will be set to be high level. Therefore:

• Between the master enables an SPI read communication to GPIO2 generates a
falling edge, if users enable any other SPIs, communication errors will occur.

• When GPIO2 is at low level, if the master enables any SPI to read (0x03 command), it
can only read data the same as the previous data, or incomplete data. But if data in
the slave receive register has been processed (refer to GPIO2 instructions), when
GPIO2 is at low level, master can be started to write (0x02 command).

• If GPIO2 shifts from low level to high level, it means the slave has updated data from
SPI_W8 to SPI_W15 in the send register, and the master can start the another read
operation (0x03 command).

7.3.3. Master Communication Logic Implementation

Incomplete C code is used to briefly introduce the communication logic:

Espressif ! /!59 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

//wr_rdy: ready to conduct the next SPI write operation

//rd_rdy: ready to conduct the next SPI read operation

unsigned char wr_rdy=1,rd_rdy=0;

void spi_read_func(....)

{

// before starting the read operation, check if there is new
data for the slave to read (rd_rdy is non-0);

// also, check if the previous write operation is completed;
write operationcompleted and processing data (signal GPIO0 is
0), or new data can be written into the slave (wr_rdy is non-0)

if(rd_rdy&&((GPIO0= =0)||wr_rdy)){

rd_rdy=0; //rd_rdy set to be 0

spi_transmit(0x03,0,*read_buff);// start the SPI transmission,
command 3 + address 0 + 32 bytes of data

….

}

}

void spi_write_func(...)

{

// before starting the write operation, check if there is new
data for the slave to receive (rd_rdy is non-0);

// also, check if the previous read operation is completed;
completed, no new data to be read (signal GPIO2 is 0), or new
data to be read (rd_rdy is non-0)

if(wr_rdy&&((GPIO2= =0)||rd_rdy)){

wr_rdy=0; //wr_rdy set to be 0

spi_transmit(0x02,0,*write_buff);// start the SPI transmission,
command 2 + address 0 + 32 bytes of data

...

}

}

GPIO0_Raising_Edge_ISR() // rising edge interrupt program connected
to the ESP8266 GPIO0

{

wr_rdy=1; // data sent by the master has been processed,
ready for the next write operation

Espressif ! /!60 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

}

GPIO2_Raising_Edge_ISR() // rising edge interrupt program connected
to the ESP8266 GPIO2

{

rd_rdy=1; // the slave updates the send buffer, the master is
ready to read

7.4. ESP8266 SPI Slave API Functions
1. void spi_slave_init(uint8 spi_no)

Function:

Initialise the SPI slave mode, set the IO interface to SPI mode, start the SPI transmission
interrupt, and register spi_slave_isr_handler. The communication format is set to be 8 bits
command + 8 bits address + 256 bits (32 Bytes) read/write data.
Parameters:

spi_no: number of the SPI module. The ESP8266 processor has two SPI modules (SPI
and HSPI) with the same functions.
value to be selected: SPI or HSPI.

2. spi_slave_isr_handler(void *para)
Function and trigger condition:

It is the SPI interrupt handler function. When the master successfully reads data from or
writes data into the slave, the interrupt will be triggered. Users can revise the interrupt
service routine in order to complete the communication. The code is shown below.

Code:

uint32 regvalue;

static uint32 t1 =0;

static uint32 t2 =0;

t1=system_get_time();

if(READ_PERI_REG(0x3ff00020)&BIT4){ //bit4: SPI interrupt

CLEAR_PERI_REG_MASK(SPI_SLAVE(SPI), 0x3ff);

}else if(READ_PERI_REG(0x3ff00020)&BIT7){ //bit7: HSPI
interrupt,

regvalue=READ_PERI_REG(SPI_SLAVE(HSPI)); // record the
interrupt type

// turn off the SPI interrupt enable

Espressif ! /!61 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

CLEAR_PERI_REG_MASK(SPI_SLAVE(HSPI),

SPI_TRANS_DONE_EN|

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN);

// resume the SPI slave to communicable status, in order
to prepare for the next communication

SET_PERI_REG_MASK(SPI_SLAVE(HSPI), SPI_SYNC_RESET);

// clear the interrupt flag

CLEAR_PERI_REG_MASK(SPI_SLAVE(HSPI),

SPI_TRANS_DONE|

SPI_SLV_WR_STA_DONE|

SPI_SLV_RD_STA_DONE|

SPI_SLV_WR_BUF_DONE|

SPI_SLV_RD_BUF_DONE);

// turn on the SPI interrupt enable

SET_PERI_REG_MASK(SPI_SLAVE(HSPI),

SPI_TRANS_DONE_EN|

SPI_SLV_WR_STA_DONE_EN|

SPI_SLV_RD_STA_DONE_EN|

SPI_SLV_WR_BUF_DONE_EN|

SPI_SLV_RD_BUF_DONE_EN);

//MISO processing program

if(regvalue&SPI_SLV_WR_BUF_DONE){

GPIO_OUTPUT_SET(0, 0); //GPIO0 set to be 0

idx=0;

//read the data received

while(idx<8){

recv_data=READ_PERI_REG(SPI_W0(HSPI)+4*idx);

//os_printf("rcv data : 0x%x \n\r",recv_data);

spi_data[4*idx+0] = recv_data&0xff;

spi_data[4*idx+1] = (recv_data>>8)&0xff;

spi_data[4*idx+2] = (recv_data>>16)&0xff;

spi_data[4*idx+3] = (recv_data>>24)&0xff;

Espressif ! /!62 104 2016.06

!

7. SPI Wi-Fi Passthrough 2-Interrupt Mode

idx++;

}

system_os_post(USER_TASK_PRIO_1,MOSI,0);// send the
reception completed message

GPIO_OUTPUT_SET(0, 1); //GPIO0
set to be 1

SET_PERI_REG_MASK(SPI_SLAVE(HSPI),
SPI_SLV_WR_BUF_DONE_EN);

//master reads, slave sends the processing program

if(regvalue&SPI_SLV_RD_BUF_DONE){

GPIO_OUTPUT_SET(2, 0); //GPIO2 set to be 0

}

}else if(READ_PERI_REG(0x3ff00020)&BIT9){ //bit7: I2S interrupt

}

Espressif ! /!63 104 2016.06

!

8. HSPI Host Multi-device API

8. HSPI Host Multi-device API
8.1. Functional Overview

ESP8266 encapsulates two SPI (Serial Peripheral Interfaces) bus segments, shortly named
SPI and HSPI. SPI bus is especially used to read CPU programming code from the external
Flash, while HSPI bus is used for SPI device communication.
When ESP8266 is working as a host, HSPI bus can operate with three user devices,
besides, it also supports one external Flash writing operation. User devices are supported
through selection with CS lines. To be more specific,

In the above-mentioned ways of connection, SPI bus shares the same external Flash with
HSPI bus. Apart from the memory occupied by programs and related configurations, the
rest Flash memory can all be used for reading and writing of user programs.

8.2. Hardware Connection
Generally speaking, SPI slave devices specify four logic signals: SCLK, MOSI, MISO, and
CS.
HSPI bus can operate with three different user devices, the ways of connection are
explained below:

Mode Device Name

HSPI Default IO User device 1

SPI OVERLAP and CS1 User device 2

SPI OVERLAP and CS2 User device 3

SPI OVERLAP and CS0 Flash

⚠ Notice:
• Operation with devices via HSPI host implemented by software programming is not supported in the

API functions.

• When downloading user programs, the clock frequency of SPI bus used for reading Flash data should
be set at 80 MHz. SPI clock frequency should be specified as 80 MHz at SPI OVERLAP and CS1
mode or SPI OVERLAP and CS2 mode.

Mode Pin Name of Host ESP8266 SPI bus Signal Line

HSPI Default IO

MTDO CS

MTCK MOSI

MTDI MISO

Espressif ! /!64 104 2016.06

!

8. HSPI Host Multi-device API

8.3. API Description
Names of the connection modes supported by the system are defined by macro definitions
in \app\include \driver\spi_overlap.h.

• HSPI_CS_DEV (HSPI default IO)
• SPI_CS1_DEV (SPI OVERLAP and CS1)
• SPI_CS2_DEV (SPI OVERLAP and CS2)

Operation with the Flash is defined as SPI_CS0_FLASH. If HSPI operates with two user
devices, the API function is shown as below:

void hspi_master_dev_init(uint8 dev_no,uint8 clk_polar,uint8 clk_div)

MTMS CLK

SPI OVERLAP and CS1

U0TXD CS1

SD_CLK SCLK

SD_DATA0 MISO

SD_DATA1 MOSI

SPI OVERLAP and CS2

GPIO0 CS2

SD_CLK SCLK

SD_DATA0 MISO

SD_DATA1 MOSI

Mode Pin Name of Host ESP8266 SPI bus Signal Line

! Note:

The pins used when HSPI operates with the Flash in OVERLAP mode is completely the same with that of SPI
communication.

Function
This function is used to initialize connection of HSPI host. Altogether four user devices can be
operated. If multi devices communicate with the host using SPI communication mode, the
function should be called each time when that certain device is operated.

Location Defined in directory \app\include\driver\spi_overlap.h, implemented in directory \app\driver
\spi_overlap.c.

Espressif ! /!65 104 2016.06

!

8. HSPI Host Multi-device API

void hspi_dev_sel(uint8 dev_no)

Parameters

• uint8 dev_no: only HSPI_CS_DEV, SPI_CS1_DEV, SPI_CS2_DEV, and SPI_CS0_FLASH
are supported, the corresponding values of these four parameters are 0, 1, 2, and 3
respectively. If the parameter should be other values, ERROR will be printed and the
function will be returned.

• uint8 clk_polar: clock polarity.
- If the clock polarity is 0, data are captured on the clock’s rising edge, and are

propagated on a falling edge.
- If the clock polarity is 1, data are captured on the clock’s falling edge, and are

propagated on a rising edge.
- If the clock polarity should be other values, ERROR will be printed and the function will

be returned.
• uint8 clk_div: clock frequency division. 40 MHz is reference frequency, the number of

division is clk_div+1. To be more specific, 0 stands for reference frequency, 1 stands for 20
MHz, while 2 stands for 40/3 MHz, and so forth.

⚠ Notice:
ONLY when the clock frequency of SPI bus used for reading Flash data is set at 80 MHz. If the device is
defined by SPI_CS1_DEV and SPI_CS2_DEV via SPI OVERLAP, the clock frequency of host SPI is
unadjustable, and should be 80 MHz.

Function Convert and select host communication devices.

Location Defined in directory \app\include\driver\spi_overlap.h, implemented in directory \app
\driver\spi_overlap.c.

Parameters

uint8 dev_no: only HSPI_CS_DEV, SPI_CS1_DEV, SPI_CS2_DEV, and SPI_CS0_FLASH
are supported, the corresponding values of these four parameters are 0, 1, 2, and 3
respectively. If the device has not been initialized, ERROR will be printed and the function will
be returned. If it the parameter should be other values, ERROR will be printed and the
function will be returned.

Espressif ! /!66 104 2016.06

!

9. I2C User Guide

9. I2C User Guide
9.1. Functional Overview

ESP8266EX now has interfaces for I2C master devices, and allows control and reading and
writing over other I2C slave devices (e.g. most digital sensors).
All GPIO pins can be configured with open-drain mode, thus easily enabling GPIO interface
for I2C data or clock functionalities.

Besides that, the chip has pull-up resistance inside which can help save the pull-up
resistance outside.
As an I2C master, ESP8266EX has its waveforms of the SDA and SCL lines simulated from
SPIO, where SDA access is behind the positive edge of SCL. SCL high and low levels will
maintain 5us and thus I2C clock pulse will be around 100KHz.

9.2. I2C master Interface
9.2.1. Initialization

i2c_master_gpio_init: GPIO hardware initialization.
Steps are as follows:

1. Select pin functionality and set as GPIO
2. Set the GPIO into open-drain mode
3. Initialize SDA and SCL as high levels
4. Disconnect GPIO and reset slave state

i2c_master_init(void): Reset slave state

9.2.2. Start I2C

i2c_master_start(void): master generates I2C start conditions.

!

Espressif ! /!67 104 2016.06

!

9. I2C User Guide

9.2.3. Stop I2C

i2c_master_stop(void): master generates I2C stop conditions.

!

9.2.4. I2C Master Responds ACK

i2c_master_send_ack(void): sets I2C master to respond ACK.

!

9.2.5. I2C Master Responds NACK

I2C_master_send_nack(void): sets I2C master to respond NACK.

!

Espressif ! /!68 104 2016.06

!

9. I2C User Guide

9.2.6. Check I2C Slave Response

bool i2c_master_checkAck(void): check slave response state.

Return value:
• TRUE: "acknowledge" from slave
• FALSE: "not acknowledge" from slave

Details shown below:

!

9.2.7. Write Data on I2C Bus

i2c_master_writeByte(uint8 wrdata): write data on I2C bus
Parameters:

1 Byte of data

9.2.8. Read Data from I2C Bus

i2c_master_readByte (void): read a byte from SPI slave.

Return value:
Read 1 Byte of data.

9.3. Demo
Please refer to IOT_Demo provided by esp_iot_sdk, for example:

! Note:

Data at the highest place will be sent first and that at the lowest place sent last.

Either slave address or data can be sent.

Espressif ! /!69 104 2016.06

!

9. I2C User Guide

!

!

Espressif ! /!70 104 2016.06

!

10. I2S Module Description

10. I2S Module Description
10.1. Functional Overview

The I2S module of the ESP8266 contains a Tx (transport) unit and a Rx (receive) unit. Both
the Tx and the Rx unit have a three-wire interface that includes:

• Clock line;
• Data line;
• Channel selection line (the line for selecting the left or the right channel).

The transmission direction of the I2S module is shown in Table 10-1.

10.2. System Configuration
10.2.1. I2S Module Configuration

10.2.1.1.I2S Module Reset
Bits 0 ~ 3 in the I2SCONF register provide the software reset feature to the I2S. Write 1 and
then 0 to complete the reset operation. Different bits are used for:

• Bit 0: I2S_TX_RESET
• Bit 1: I2S_RX_RESET
• Bit 2: I2S_TX_FIFO_RESET
• Bit 3: I2S_RX_FIFO_RESET

! Note:

The clock and data output will stop when 0 is written into the data line.

Table 10-1. Transmission Direction of The I2S Module

Tx unit Rx unit

Clock line output input output input

Data line output input

Channel selection line output input

! Note:

Both the Tx and Rx unit have a separate FIFO, which has a depth of 128 and a width of 32 bits, and can be
visited by software directly. You can also make an automatic DMA operation to FIFO by the SLC module.

Espressif ! /!71 104 2016.06

!

10. I2S Module Description

10.2.1.2.I2S Module Start
Provide a running clock
To start the I2S module to transport or receive data, firstly you need to provide a running
clock for the I2S by invoking the system function below:

i2c_writeReg_ Mask_def (i2c_bbpll, i2c_bbpll_en_audio_clock_out, 1)

Start the Tx module
Bit 8 in the I2SCONF register is used to start the Tx module.

• In the master Tx mode, when bit 8 is 1 the Tx mode will output the clock signal, the
left and right channel signals and data. The first frame data is 0, and then the FIFO
data will be shifted out.
- If no data is written into the the FIFO, the data line will remain 0.
- If the FIFO has transported all the written data and no new data is written in the

FIFO, the data line will loop the last data in the FIFO.

• In the slave passive Tx mode, the Tx module will be started when it receives a clock
signal from the Rx module.

Start the Rx module
Bit 9 in the I2SCONF register is used to start the Rx module. In the master receive mode:

• When bit 9 is 1 the Rx mode will output the clock signal, and sample the data line
and the channel selection line.

• When bit 9 is 0, it will stop the clock signal transport.
• In the slave receive mode, it is prepared to receive any data from the master.

10.2.1.3.Tx/Rx FIFO Mode
FIFO access mode
Bit 12 of I2S_FIFO_CONF defines the access mode of the FIFO.

• When bit 12 is 1, the SLC will make a DMA operation to the FIFO. Direct access to
the FIFO will be invalid.

• When bit 12 is 0, the FIFO can be accessed directly by software.
• The default value of bit12 is 1.

Tx FIFO mode
Bits 13 ~ 15 of I2S_FIFO_CONF are used to control the transport data format for
i2s_tx_fifo_mod.

Value Description

0 16bits_per_channel full data (dual channel, FIFO data organisation, 16 bits data in the left
channel,16 bits data in the right channel, and 16 bits data in the left channel)

Espressif ! /!72 104 2016.06

!

10. I2S Module Description

RX FIFO mode
Bits 16~18 of I2S_FIFO_CONF is used to control the receive data format for
i2s_rx_fifo_mod.

10.2.1.4.Channel Mode
Tx channel mode
Bits 0 ~ 2 in the I2SCONF_CHAN are used for the Tx channel mode (tx_chan_mod).

Rx channel mode
Bits 3~4 in the I2SCONF_CHAN are used for the Rx channel mode (rx_chan_mod).

1 16bits_per_channel half data (single channel, FIFO data organisation, 16 bits data, 16 bits
invalid , 16 bits data)

2 24bits_per_channel full data discontinue (dual channel, FIFO data organisation, 24 bits data in
the left channel, 8 bits invalid, 24 bits data in the right channel, 8 bits empty)

3 24bits_per_channel half data discontinue (single channel, FIFO data organisation, 24 bits data,
8 bits invalid, 24 bits data, 8 bits empty)

4 24bits_per_channel full data continue (left and right channels, FIFO data organisation, 24 bits
data in the left channel, 24 bits data in the right channel)

5 24bits_per_channel half data continue (single channel, FIFO data organisation, 24 bits data, 24
bits data)

6 ~ 7 Invalid

Value Description

Value Description

0 16bits_per_channel full data

1 16bits_per_channel half data

2 24bits_per_channel full data discontinue

3 24bits_per_channel half data discontinue

4 ~ 7 Invalid

Value Description

0 Dual-channel

1 Right channel (left and right audio channels are used to put the data of the right channel)

2 Left channel (left and right audio channels are used to put the data of the left channel)

3 Right channel (put a constant from regfile in the left channel)

4 Left channel (put a constant from regfile in the right channel)

Espressif ! /!73 104 2016.06

!

10. I2S Module Description

10.2.1.5.Clock Mode
in the I2SCONF:

• Bits16 ~ 21 are the prescaler of the input clock (I2S_CLKM_DIV_NUM).
• Bits 22 ~ 27 are the frequency divider of the communication clock signal

(I2S_BCK_DIV_NUM).

10.2.1.6.Other Configurations
Register I2SRXEOF_NUM sets the number of data to be received when the Rx FIFO
triggers the SLC transport (unit: 4 bytes).
See the definitions of i2s_reg.h in DEMO. Other instructions will be updated.

10.2.2. Link List Configuration

In the ESP8266, the DMA transfers the receive and transport packets in the SDIO to the
corresponding memory. The software will define the structure (or group) of the registration
list and cache space(s).

As shown in Figure 10-1, there is only one cache space and one registration list. Write the
first address of the cache and other information to the registration list, and then write the
first address of the registration list to the hardware register of the ESP8266. Therefore, the
DMA will automatically operate the SDIO and the cache space.

!
Figure 10-1. Registration List

Value Description

0 Dual-channel

1 Right channel

2 Left channel

owner sub_sof 5’b0 length［11:0］ size［11:0］eof

buf_ptr [31:0]

next_link_ptr [31:0]

word 0

word 1

word 2

Field name Description

owner
1’b0 Software operates the buffer of the current link. The MAC shouldn't use this bit.

1’b1 Hardware operates the buffer of the current link.

Espressif ! /!74 104 2016.06

!

10. I2S Module Description

10.2.3. SLC Module Configuration

10.2.3.1.Basic Configuration
The SLC module provides the ESP8266 with DMA service of several modules.

Follow the instructions below so that the SLC module is used for the FIFO transmission of
I2S.

• Set Bits 12~13 (SLC_MODE) of the SLC_CONF0 to 01.
• Set Bit 17 (SLC_INFOR_NO_REPLACE) and Bit 16 (SLC_TOKEN_NO_REPLACE) of

the SLC_RX_DSCR_CONF to 01.

10.2.3.2.Write The First Address
Bits 0~19 of SLC_RX_LINK (SLC_TX_LINK) register are the first 20 bits of the Rx (Tx)
registration list address. The first address of the registration list should be written to be the
register before the SLC hardware is started.

10.2.3.3.Start The SLC Transmission
Bit 29 of SLC_RX_LINK (SLC_TX_LINK) register is the control bit for starting the SLC
transmission. In the cache space, register a link list and write the first 20 bits of the link
table address to the hardware, and then set bit 29 to 1 to start the SLC transmission.

10.3. API Function Description
The following functions can be found in:

/app/driver/i2s.c and /app/include/driver/i2s.h

eof

Flag of frame end for the end of AMPDU sub-frame the mark isn't needed).
When the MAC transports the frames, it's used in the end of the frame. For
the link in the position of eof the buffer_length[11:0] should be equal to the
length of the remaining frame; otherwise, the mac will report an error.
When the MAC receives the frames, it's used to indicate that the frame has
been received completely and the value is set by hardware.

sub_sof Flag of sub-frame start. It’s used to differentiate different sub-frames in the
AMPDU. It’s only for MAC transport.

length[11:0] The actual size of the buffer.

size[11:0] The total size of the buffer.

buf_ptr[31:0] The start address of the buffer.

next_link_ptr[31:0] The start address of the next descripter. When the MAC is receiving the flame, the
value is “0”, indicating that there is no empty buffer to receive any flames.

Field name Description

Espressif ! /!75 104 2016.06

!

10. I2S Module Description

10.3.1. Void Function

void i2s_test

void i2s_init

void creat_one_link

void slc_init

10.3.2. CONF Function
CONF_RXLINK_ADDR

CONF_TXLINK_ADDR

Function void i2s_test(void)

Feature I2S Programs for read and write testing of the module. It is the core function of the DEMO, which can be
used to test the transporting and receiving communications of the I2S.

Parameter null

Function void i2s_init(uint8 slc_en)

Feature Configure the related registers of the I2S.

Parameter
slc_en: Enable the SLC module access. When it's 0, the software will operate the FIFO For other
values for the SLC module directly access FIFO refer to 2.1.3. Tx/Rx FIFO mode.

Function void creat_one_link (uint8 own, uint8 eof,uint8 sub_sof, uint16 size, uint16 length, uint32* buf_ptr,
uint32* nxt_ptr, struct sdio_queue* i2s_queue)

Feature Set up a link register structure.

Parameter
struct sdio_queue* i2s_queue: The first address to be configured structure space.
For details of other parameters, refer to Section 10.2.2. Link list Configuration.

Function void slc_init (uint8 trans_dev)

Feature Basic configuration of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.

Parameter uint8 trans_dev: SLCModule access device, 1 is I2S 0 is SDIO other input values are not valid.

Function CONF_RXLINK_ADDR(addr)

Feature Configure the Rx link list address to the register. For configuration instructions, refer to Section 10.2.3.
SLC module configuration.

Parameter addr: link list address

Function CONF_TXLINK_ADDR(addr)

Feature Configure the TX link list address to the register. For configuration instructions, refer to Section 10.2.3.
SLC module configuration.

Espressif ! /!76 104 2016.06

!

10. I2S Module Description

10.3.3. START Function
START_RXLINK

START_TXLINK

Parameter addr: link list address

Function START_RXLINK()

Feature Start the Rx transmission of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.

Parameter null

Function START_TXLINK()

Feature Start the Tx transmission of the SLC module. For configuration instructions, refer to Section 10.2.3. SLC
module configuration.

Parameter null

Espressif ! /!77 104 2016.06

!

11. UART Introduction

11. UART Introduction
11.1. Functional Overview

There are two group ESP8266 UART interfaces, respectively:
• UART0:

- U0TXD: pin26 (U0TXD)
- U0RXD: pin25 (U0RXD)
- U0CTS: pin12 (MTCK)
- U0RTS: pin13 (MTDO)

• UART1:
- U1TXD: pin14 (GPIO2)

The basic working process of transmission FIFO:
As long as there has data filling into transmission FIFO, it will immediately start sending
process.Since transmission itself is a relatively slow process,other data can be sent to the
transmission FIFO simultaneously. Data sending should be paused when the transmission
FIFO is full ,or it will cause data loss.Transmission FIFO will sent out one by one in
accordance with the order of the data filling in,until the transmission FIFO is completely
empty.Data has been sent will be automatically cleared, at the same time transmission FIFO
will be more of a vacancy.

The basic working process of receiver FIFO:
When the hardware logic receives the data, it will fill them into receiver FIFO. Program
should withdraw the data timely ,the data-dequeue is also a process of deleting data from
FIFO automatically,thus, there will be one more vacancy in receiver FIFO. If the data in the
receiver FIFO can not be removed in time, the receiver FIFO will be full which makes data
loss.
Scenario:

UART0 works as data communication interface and UART1 woks as debug port.

Espressif ! /!78 104 2016.06

!

11. UART Introduction

!
UART0 will default output some print while booting ,the baud rate of this period print
contents is relate with external crystal frequency.When using the 40M crystal,this section
print baud rate is 115200.When use the 26M crystal,this section print baud rate is 74880.
If this print affect application function, you can abandon print output indirectly while power-
on period in the fourth quarter method.

11.2. Hardware Resources
Both UART0 and UART1 have a length of 128 Byte hardware, read and write FIFO
operations are at the same address.
The hardware registers of two UART module are the same, and distinguished by macro
definitions of UART0 / UART1.

11.3. Parameter Configuration
UART attribute parameters are all in UART_CONF0 register, can be found in the
Uart_register.h. You can configure UART properties through modifying the different bit of
the register.

11.3.1. The Baud Rate

The serial of ESP8266 can support the baud rate range from 300 to 115200 * 40.

Espressif ! /!79 104 2016.06

!

11. UART Introduction

Interface: void UART_SetBaudrate (uint8 uart_no,uint32 baud_rate);

11.3.2. Parity Bit

#define UART_PARITY_EN (BIT(1)) Enable check: 1: enable; 0: disable
#define UART_PARITY (BIT(0)) Check type setting 1: Odd parity; 0: Even parity
Interface: void UART_SetParity(uint8 uart_no, UartParityMode
Parity_mode);

11.3.3. Data Bit

#define UART_BIT_NUM 0x00000003 //Length of data bit occupies two bit:
Setting these two bit can configure data length 0: 5bit ; 1: 6bit ; 2: 7bit ; 3: 8bit
#define UART_BIT_NUM_S 2 //Offset register is 2 (2 bit start)
Interface: void UART_SetWordLength(uint8 uart_no, UartBitsNum4Char
len)

11.3.4. Stop Bit

#define UART_STOP_BIT_NUM 0x00000003 //The length of data bit occupies two bit:
 Configure the length of stop bits through setting these two bit can 1 : 1 bit ; 2 : 1.5 bit ; 3
: 2 bit
#define UART_STOP_BIT_NUM_S 4 //Register offset is 4 (start from 4th bit)
Interface: void UART_SetStopBits(uint8 uart_no, UartStopBitsNum
bit_num);

11.3.5. Inverting

Each input and output UART signals can reverse configuration internal.
#define UART_DTR_INV (BIT(24))
#define UART_RTS_INV (BIT(23))
#define UART_TXD_INV (BIT(22))

#define UART_DSR_INV (BIT(21))
#define UART_CTS_INV (BIT(20))
#define UART_RXD_INV (BIT(19))
Set the corresponding register,you can reverse the corresponding signal line input / output.

Interface: void UART_SetLineInverse
(uint8 uart_no, UART_LineLevelInverse inverse_mask);

Espressif ! /!80 104 2016.06

!

11. UART Introduction

11.3.6. Switch Output Port of Print Function

By default, the system os_printf function print output from UART0,you can set to print from
UART0 or UART1 port through the following interfaces.
void UART_SetPrintPort(uint8 uart_no);

11.3.7. Read The Remaining Number of Bytes in tx / rx Queue

Tx fifo length

(READ_PERI_REG(UART_STATUS(uart_no))>>UART_TXFIFO_CNT_S)
&UART_TXFIFO_CNT;

Interface: TX_FIFO_LEN(uart_no)
Rx fifo length:
(READ_PERI_REG(UART_STATUS(UART0))>>UART_RXFIFO_CNT_S)
&UART_RXFIFO_CNT;

Interface: RF_FIFO_LEN(uart_no)

11.3.8. Loopback Operation (loop-back)

Once configured in UART_CONF0 register, uart tx / rx shorted internally.
#define UART_LOOPBACK (BIT(14)) // loopback enable bit,1: enable;0: disable

ENABLE: SET_PERI_REG_MASK(UART_CONF0(UART0), UART_LOOPBACK);
Interface: ENABLE_LOOP_BACK(uart_no)
DISABLE:CLEAR_PERI_REG_MASK(UART_CONF0(UART0), UART_LOOPBACK);
Interface: DISABLE_LOOP_BACK(uart_no)

11.3.9. Line Stop Signal

To produce the line stop signal,you can set UART_TXD_BRK 1,then after UART
transmission queue complete sending it, it will output a break signal (tx output low), set it 0
if you need to stop the output.

#define UART_TXD_BRK (BIT(8)) //Line stop signal, 1:enable ; 0: disable

11.3.10.Flow Control

Configuration process:
• Configure pin12, pin13 of UART0 pin as U0CTS and U0RTS functions.

#define FUNC_U0RTS 4
#define FUNC_U0CTS 4
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_U0RTS);

Espressif ! /!81 104 2016.06

!

11. UART Introduction

PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_U0CTS);

• Hardware flow control in the receive direction can configure thresholds,when the
length of rx fifo is greater than the set threshold,U0RTS feet will be pulled to prevent
the other party sending.

Configured the thresholds of receiving flow control:
The threshold related configurations are generally defined in UART_CONF1 register.

#define UART_RX_FLOW_EN (BIT(23)) The 23rd bit enabled to receive flow control: 0:
disable; 1: enable
#define UART_RX_FLOW_THRHD 0x0000007F //Threshold, occupied 7bit, range 0 ~ 127

#define UART_RX_FLOW_THRHD_S 16 //Register offset is 16 (start from 16th bit)
• Once configure enable of the flow control of sending direction configuration,the

register in UART_CONF0:

#define UART_TX_FLOW_EN (BIT(15)) Enable transmission flow control: 0: disable ; 1:
enable

• Interface:

Void UART_SetFlowCtrl(uint8 uart_no,UART_HwFlowCtrl flow_ctrl,uint8 rx_thresh);
e)demo hardware board connections:

Need to connect the J68 (U0CTS) and J63 (U0RTS) jumper .

11.3.11.Other Interfaces

TX_FIFO_LEN(uart_no) //Macro definition, the current length of the transmit queue
RF_FIFO_LEN(uart_no) //Macro definition, the current length of the receiving queue

11.4. Configure Interrupt
Since all interrupt events will be conducted together in the "OR" operation before being
sent to the interrupt controller,UART can only generate an interrupt request each time.By
polling the interrupt state function UART_INT_ST (uart_no),software can deal with multiple
interrupt events in one interrupt service function(multiple if parallel statement).

11.4.1. Interrupt register

Interruption registers in UART:

UART_INT_RAW Interrupt the original status register
UART_INT_ENA Interrupt enable register: Indicates interrupt the current enable UART
UART_INT_ST Interrupt Status Register: Indicates the currently active interrupt status
UART_INT_CLR Clear Interrupt register:set the corresponding bit to clear the interrupt
status register

Espressif ! /!82 104 2016.06

!

11. UART Introduction

11.4.2. Interface

Open interrupt enable: UART_ENABLE_INTR_MASK(uart_no,ena_mask);

Close interrupt enable:
UART_DISABLE_INTR_MASK (uart_no,disable_mask);
Clear interrupt enable:
UART_CLR_INTR_STATUS_MASK(uart_no,clr_mask);

Get interrupt status UART_GET_INTR_STATUS(uart_no);

11.4.3. Interrupt Type

Receive full interrupt
Interrupt status bits:UART_RXFIFO_FULL_INT_ST
Definition: When configure threshold and enable interrupts, triggered will interrupt when rx
fifo data length is greater than the threshold.
Application:more applied in receiving UART data ,cooperating with flow control,dealing with
directly or posting messages or turn into buffer.For example,when the configuration of the
threshold is 100 and the enable full is interruption, the full will interrupt once the serial port
receive 100 Bytes.
Configure threshold value:

Full interrupt threshold
In the UART_CONF1 register
#define UART_RXFIFO_FULL_THRHD 0x0000007F //The threshold mask, 7bit long and
range 0 ~ 127
#define UART_RXFIFO_FULL_THRHD_S 0 //Shift register is 0 (start from 0bit)
Set enable to interrupt:
In UART_INT_ENA register

#define UART_RXFIFO_FULL_INT_ENA (BIT(0)) //full interrupt enable bit, 1: enable;0:
disable
clear interrupt status:

As for special full interrupts you need first to read all fifo received data empty, then write
the clear interruption status register.Otherwise, the interrupt status bit will be set again after
exit.
Please see details in examples of interrupt handling.
Receive overflow interrupt
Interrupt status bits:UART_RXFIFO_OVF_INT_ST

Espressif ! /!83 104 2016.06

!

11. UART Introduction

Definition: When enable receive overflow to interrupt and the length of the receive queue is
greater than the total length of the queue (128 Bytes), it will trigger the interrupt signal.
Trigger scene: Generally, it’s only under the case of unset flow control,because there will not
occur overflow when has flow control.Different from the full interrupt is artificially set the
threshold and the data will not lose,overflow interrupt triggering will usually has data loss.
Can be used for debugging and error checking.
Set enable to interrupt:
In UART_INT_ENA register
#define UART_RXFIFO_OVF_INT_ENA (BIT(4)) //Overflow interrupt enable bit: 1: enable; 0:
disable
Clear interrupt status:
Read queue value to make the queue length less than 128, then set the clear interrupt
status register.
Receive timeout interrupt
Interrupt status bit: UART_RXFIFO_TOUT_INT_ST
Definition:When configure threshold value of tout,enable interrupts and UART begin to
receive data, it will triggered tout interrupt once stop transmission time exceeds the set
threshold.
Applications: more applied in handling serial commands or data, process the data directly,
or post a message, or turn into deposited buffer.
Configure threshold and function enable:

Tout interrupt threshold (or threshold) in UART_CONF1 register.
Tout unit threshold is about 8 data bits uart time (approximately one byte).
#define UART_RX_TOUT_EN (BIT(31)) //Timeout function enable bit: 1: enable;0: disable

#define UART_RX_TOUT_THRHD 0x0000007F //Timeout threshold configuration bits, a
total of seven and range 0 ~ 127
#define UART_RX_TOUT_THRHD_S 24 //Register offset is 24 (start from 24th bit)
Set enable to interrupt:

In UART_INT_ENA register
#define UART_RXFIFO_TOUT_INT_ENA (BIT(8)) tout // Interrupt enable bit:1: enable;0:
disable
Clear interrupt status:

Like full interrupts,tout interrupt also need to firstly read out all received fifo data,then clear
interrupt status register.Otherwise, interrupt status bit will still be set after exiting.
Please see details in examples of interrupt handling.

Espressif ! /!84 104 2016.06

!

11. UART Introduction

Send empty fifo interrupt
Interrupt status bit: UART_TXFIFO_EMPTY_INT_ST

Definition: After configure empty threshold value and enable interrupts ,it will trigger this
empty interrupt when the data length of the data-send queue is less than the set threshold.
Application: Can be used in forwarding the buffer data into UART automatically with the
cooperation of interrupt handler function.For example,set the empty threshold to 5, then
when the tx fifo length be less than 5 bytes trigger the empty interrupt,in the empty
interrupt handler ,take the data from the buffer to fill the tx fifo full(operating speed is much
higher than tx fifo fifo transmission speed). Continue the cycle until the buffer data has
totally been sent out, then close the empty interrupt.
Configure threshold:

Empty interrupt threshold (or threshold) in UART_CONF1 register
#define UART_TXFIFO_EMPTY_THRHD 0x0000007F //Send queue empty interrupt
threshold configuration bits, seven bits and range 0 ~ 127
#define UART_TXFIFO_EMPTY_THRHD_S 8 //Register Offset is 8 (start from 8th)

To enable interrupt:
In UART_INT_ENA register
#define UART_TXFIFO_EMPTY_INT_ENA (BIT(1)) //empty interrupt enable bit, 1: enable;0:
disable
Clear interrupt status:
Fill the sending queue above the threshold,and clear the corresponding interrupt status
bit.If there is no data need to send, close the interrupt enable bits.

Please see details in examples of interrupt handling.
Error detection interrupt
Interrupt status bit:

Parity Error Interrupt UART_PARITY_ERR_INT_ST

Termination line error interrupt(line-break) UART_BRK_DET_INT_ST

Received frame error interrupt UART_FRM_ERR_INT_ST

Definition:
Parity error interrupt (parity_err): received byte exists parity error.
Termination line error interrupt(BRK_DET):receive break signal,or receive error initial
conditions (rx line always stays low)
Receive frame error interrupt (frm_err):stop bit is not 1.
Application:

Generally used for error detection.

Espressif ! /!85 104 2016.06

!

11. UART Introduction

To enable interrupt:

In UART_INT_ENA register,
#define UART_PARITY_ERR_INT_ENA (BIT(2)) //Parity error enable interrupt bit, 1:enable;
0:disable
#define UART_BRK_DET_INT_ENA (BIT(7)) //Terminal line error enable interrupt bit

1: enable;0: disable
#define UART_FRM_ERR_INT_ENA (BIT(3)) //Received frame error to enable interrupt bit
1: enable;0: disable
Clear interrupt status:

Clear the interrupt status bit after dealing with corresponding error.
Flow control status interrupt
Interruption status bit:
UART_CTS_CHG_INT_ST

UART_DSR_CHG_INT_ST
Definition:
When the CTS, DSR pin-line level changes, trigger this interrupt.
Application:

Generally use with flow control, when the trigger the interrupt, check the corresponding
flow control line status,if it’s high, stop writing to tx queue.
#define UART_CTS_CHG_INT_ST (BIT(6))
#define UART_DSR_CHG_INT_ST (BIT(5))

Set enable interrupt:
In UART_INT_ENA register,
#define UART_CTS_CHG_INT_ENA (BIT(6)) CTS //Line status enable interrupt bit,
1:enable;0:disable
#define UART_DSR_CHG_INT_ENA (BIT(5)) DSR //Line status enable interrupt bit,
1:enable;0:disable
Clear interrupt status:

After dealing with the corresponding error,clear the interrupt status bit.

Espressif ! /!86 104 2016.06

!

11. UART Introduction

11.5. Example of Interrupt Handler Process

!

11.6. Abandon Serial Output During Booting
When ESP8266 is booting, UART0 will default print out some information,if this should be
un-acceptable,we can abandon these print output via setting UART internal switching pin
functions,exchange U0TXD, U0RXD with U0RTS, U0CTS during initialization.

Calling interface: void system_uart_swap(void);
Before initialization:
UART0:
U0TXD: pin26(u0txd)

U0RXD: pin25(u0rxd)
U0CTS: pin12(mtck)
U0RTS: pin13(mtdo)

After the initialization pin-swap,
U0TXD: pin13(mtdo)
U0RXD: pin12(mtck)
U0CTS: pin25(u0rxd)

Espressif ! /!87 104 2016.06

!

11. UART Introduction

U0RTS: pin26(u0txd)

As the transceiver feet of UART0,hardware pin13 and pin12 won’t print out duing
booting,but be attention to ensure pin13 (mtdo) can not be pulled up by external in
ESP8266 is booting.

Espressif ! /!88 104 2016.06

!

12. PWM Interface

12. PWM Interface
12.1. Functional Overview
12.1.1. Features

PWM (Pulse Width Modulation) can be implemented on Frame Rate Control 1 (FRC1) via
software programming, achieving multi-channelled PWM with the same frequency but
different duty ratio. It can be used to control devices such as color lights, buzzer, and
electric machines, etc.

Features of PWM are listed below:

• Apply NMI (Non Maskable Interrupt) to interrupt, more precise.

• Can be extended to 8 channels of PWM signal.

• Resolution ratio higher than 14 bit, the minimum resolution can reach 45 ns.
• Configuration can be completed by call interface functions, without set the register.

12.1.2. Implementation

An optimized software algorithm provided by ESP8266 system enable the transmission of
multi-channel PWM signals via GPIO (General Purpose Input Output) interface by way of
mounting NMI on FRC1 timer.
The clock of PWM is provided by high-speed system clock, the frequency speed of which
can reach as high as 80MHz. Through pre-frequency divider, the clock source can be
divided into 16 separated frequencies, the input clock frequency of which is 5MHz. PWM
can issue coarse tuning timing via FRC1, which combined with fine tuning issued by the
high-speed system clock, can improve the resolution to as much as 45 ns.

! Note:

FRC1 is a 23-bit hardware timer.

⚠ Notice:
• PWM can not be used when APIs in hw_timer.c are in use, because they all use the same hardware

timer.

• Do not set the system to be Light Sleep mode (Do not call
wifi_set_sleep_type(LIGT_SLEEP);, because that Light Sleep will stop the CPU, it can not
be interrupted by NMI during light sleep.

• To enter Deep Sleep mode, PWM needs to be stopped first.

! Note:

The highest priority level of interrupt owned by NMI ensures the precision of PWM output waveform.

Espressif ! /!89 104 2016.06

!

12. PWM Interface

12.1.3. Configuration

• In timing interrupt, to exist the program as soon as possible, timing parameters of the
next period of PWM waveform can be loaded when PWM period started.

• After the duty ratios of every channel have been configured, the system will call
function pwm_start() to calculate timing cycle. Before that, parameters of all current
channels will be stored and protected by the system, calculation completion bits will
be cleared, too. When PWM period comes, parameters stored by the system will be
invoked.

• When PWM period is discontinued new parameters will be applied, and flags should
be set when the calculation of timing cycle is completed, so that cycles between
different colour shade with each new frame and simulate an intermediate shade,
achieving higher quality colour. The control of RGB colour lights is an good example
of PWM control.

• The specific GPIO used can be configured in user_light.h. In our demo SDK, 5
channels of PWM is applied, however, it can be extended to 16 channels. Details on
how to extend the channels of PWM is explained in Chapter 3. The minimum
resolution can reach 45 ns at 1KHz refresh rate, while the minimum duty ratio can
reach 1/22222.

12.1.4. Parameter Specification

• Minimum resolution: 45 ns (approximately speaking, the PWM input clock frequency
is 22.72 MHz): >14 bit PWM @ 1 kHz

• PWM period: 1000 μs (1 KHz) ~ 10000 μs (100 Hz)

12.2. Details on pwm.h
12.2.1. Sample Codes

#ifndef __PWM_H__

#define __PWM_H__

#define PWM_CHANNEL_NUM_MAX 8 //8 channels PWM at most

struct pwm_single_param { //define the structure of a
single PWM parameter

 uint16 gpio_set; //GPIO needs to be set

 uint16 gpio_clear; //GPIO needs to be cleared

 uint32 h_time; //time needs to be written
into FRC1_LOAD

};

struct pwm_param { //define the structure of
PWM parameter

Espressif ! /!90 104 2016.06

!

12. PWM Interface

 Uint32 period; //PWM period

 Uint32 freq; //PWM frequency

 uint32 duty[PWM_CHANNEL_NUM_MAX]; //PWM duty ratio

};

void pwm_init(uint32 period, uint32 *duty,uint32
pwm_channel_num,uint32 (*pin_info_list)[3]);

void pwm_start(void);

void pwm_set_duty(uint32 duty, uint8 channel);

uint32 pwm_get_duty(uint8 channel);

void pwm_set_freq(uint32 period);

uint32 pwm_get_freq(void);

12.2.2. Interface Specifications
1. pwm_init

2. pwm_set_period

Function Name pwm_init

Definition PWM initialization.

Sample code pwm_init (uint32 freq, uint32 *duty, uint32
pwm_channel_num,uint32 (*pin_info_list)[3]);

Description PWM GPIO, initializing parameters and timer.

Parameters

• uint32 freq: PWM period.
• uint32 *duty: duty ratio of each PWM channel.
• uint32 pwm_channel_num: the number of PWM channels.
• uint32 (*pin_info_list)[3]: This parameter, which is made up of a n x 3 array pointer,

defines the GPIO hardware parameter of each PWM channel. Registers of GPIO, pin
multiplexing of IO, and the serial number of each GPIO are defined in the array. Take the
initialization of a 3-channel PWM for example:
uint32 io_info[][3] =
{{PWM_0_OUT_IO_MUX,PWM_0_OUT_IO_FUNC,PWM_0_OUT_IO_NUM},
{PWM_1_OUT_IO_MUX,PWM_1_OUT_IO_FUNC,PWM_1_OUT_IO_NUM},
{PWM_2_OUT_IO_MUX,PWM_2_OUT_IO_FUNC,PWM_2_OUT_IO_NUM}};
pwm_init(light_param.pwm_period,light_param.pwm_duty,
3,io_info);

Call Call the function when the system is been initialized. Currently the function can be called
only once.

Returned Value Null

Function Name pwm_set_period

Definition Set PWM period.

Espressif ! /!91 104 2016.06

!

12. PWM Interface

3. pwm_set_duty

4. pwm_get_period

5. pwm_get_duty

Sample code pwm_set_period (uint32 period)

Description
Set PWM period, unit: μs.
For example, PWM period at 1KHz is1000 μs.

Parameters uint32 period: PWM period.

Call Call pwm_start() after the parameters has been set.

Returned Value Null

Function Name pwm_set_duty

Definition Set the duty ratio of PWM signal at a certain channel

Sample code pwm_set_duty (uint32 duty, uint8 channel)

Description

Set PWM duty ratio. Set the time period of PWM signal when the voltage is high. The value
of duty ratio change with PWM period.
PWM duty ratio can reach period*1000/45 at most. For example, the range of duty ratio is
between 0 and 22222 at 1kHz refresh rate.

Parameters

• uint32 duty: set the time parameter when the voltage is high. Duty ratio is (duty*45)/
(period*1000).

• uint8 channel: PWM channel that needs to be set at present. This parameter is defined
in PWM_CHANNEL.

Call Call pwm_start() after the parameters has been set.

Returned Value Null

Function Name pwm_get_period

Description Get the current PWM period.

Sample code pwm_get_period (void)

Description None.

Returned Value PWM period, unit: μs.

Function Name pwm_get_duty

Description Get the duty ratio of current PWM signal at a certain channel.

Sample code pwm_get_duty (uint8 channel)

Parameter uint8 channel: get the current PWM channel. This parameter is defined in PWM_CHANNEL.

Espressif ! /!92 104 2016.06

!

12. PWM Interface

6. pwm_start

12.3. Custom Channels
Users can customize PWM channels. Below is a detailed instruction on how to set GPIO4
as the forth channel for PWM signal output.

1. Modify initialization parameters.

uint32 io_info[][3]={

 {PWM_0_OUT_IO_MUX,PWM_0_OUT_IO_FUNC,PWM_0_OUT_IO_NUM},

 {PWM_1_OUT_IO_MUX,PWM_1_OUT_IO_FUNC,PWM_1_OUT_IO_NUM},

 {PWM_2_OUT_IO_MUX,PWM_2_OUT_IO_FUNC,PWM_2_OUT_IO_NUM},

 {PWM_3_OUT_IO_MUX,PWM_3_OUT_IO_FUNC,PWM_3_OUT_IO_NUM}

 {PWM_4_OUT_IO_MUX,PWM_4_OUT_IO_FUNC,PWM_4_OUT_IO_NUM},

 };

pwm_init(light_param.pwm_period, light_param.pwm_duty,
PWM_CHANNEL,io_info);

2. Modify user_light.h.

#define PWM_0_OUT_IO_MUX PERIPHS_IO_MUX_MTDI_U

#define PWM_0_OUT_IO_NUM 12

#define PWM_0_OUT_IO_FUNC FUNC_GPIO12

#define PWM_1_OUT_IO_MUX PERIPHS_IO_MUX_MTDO_U

#define PWM_1_OUT_IO_NUM 15

#define PWM_1_OUT_IO_FUNC FUNC_GPIO15

#define PWM_2_OUT_IO_MUX PERIPHS_IO_MUX_MTCK_U

#define PWM_2_OUT_IO_NUM 13

Call Call pwm_start() after the parameters has been set.

Returned Value Duty ratio of a certain PWM channel, the value returned is (duty*45)/ (period*1000).

Function Name pwm_start

Description Update PWM parameters.

Sample code pwm_start (void)

Parameter None.

Call Call pwm_start() when PWM related parameters have been set.

Returned Value Null.

Espressif ! /!93 104 2016.06

!

12. PWM Interface

#define PWM_2_OUT_IO_FUN CFUNC_GPIO13

#define PWM_3_OUT_IO_MUX PERIPHS_IO_MUX_GPIO4_U

#define PWM_3_OUT_IO_NUM 4

#define PWM_3_OUT_IO_FUNC FUNC_GPIO4

#define PWM_4_OUT_IO_MUX PERIPHS_IO_MUX_GPIO5_U

#define PWM_4_OUT_IO_NUM 5

#define PWM_4_OUT_IO_FUNC FUNC_GPIO5

#define PWM_CHANNEL 5

Espressif ! /!94 104 2016.06

!

13. IR Remote Control User Guide

13. IR Remote Control User Guide
13.1. Introduction to Infrared Transmission

Users can request the sample codes of infrared transmission by sending an e-mail to
feedback@espressif.com.
This document introduces how to implement transmitting or receiving remote control codes
using the 32-bit NEC IR transmission protocol as an example.

13.1.1. Transmitting

Users can use the following methods to transmit carrier wave:
• BCK of I2S
• 38KHz carrier frequency generated by WS pin
• Carrier wave generated by any GPIO via sigma-delta function. However, the duty ratio

of carrier wave generated by sigma-delta is around 20%, thus MTMS pin (GPIO14) is
suggested, for this pin can generate standard square wave at a carrier frequency of
38KHz and a duty ratio of 50% exactly.

In the sample codes, data transmission queue is generated via the DSR TIMER interface of
system FRC2, while a state machine driving the transmission of infrared data is also
generated.
Considering that the timing precision of transmitting NEC infrared code should reach a level
of µs, when initiating IR TX, system_timer_reinit should be invoked to improve the timing
precision of FRC2. In user_config.h, enable the definition of USE_US_TIMER, then interface
function os_timer_arm_us can be invoked to implement precise timing at the level of µs.

13.1.2. Receiving

The receiving of remote control codes is implemented via edge-triggered interrupt. When
one system is substracted from one another, the result is the duration time of the wave.
This can be processed by software state machine ir_intr_handler.

⚠ Notice:
• Receiving of infrared remote control codes is implemented via GPIO interrupt. However, the system

can only register only one IO interrupt handler program at the same time. If other IOs also need
interrupts, please handle these interrupts in the same processing program by determine the source of
interrupt and deal with them accordingly.

• In non-OS version of SDK, functions with ICACHE_FLASH_ATTR properties, including print function
os_printf defined in IROM section of the Flash, should NOT be invoked in the whole process of
interrupt handling process such as GPIO, UART, FRC, etc.

Espressif ! /!95 104 2016.06

!

13. IR Remote Control User Guide

13.2. Parameters Configuration
All kinds of parameters related to transmitting and receiving of infrared remote control
codes can be configured in ir_tx_rx.h.
Config Parameters for Transmitting:

#define GEN_IR_CLK_FROM_IIS 0

// Config the mode of carrier

// 1: IIS clock signal generates carrier wave for transmission

// 0: generate carrier wave for transmission under GPIO sigma-delta
modeI

// Suggest using MTMS pin to implement infrared transmitting
function.

 // Config the register function and
multiplexing function of infrared pins

#define IR_GPIO_OUT_MUX PERIPHS_IO_MUX_GPIO5_U

#define IR_GPIO_OUT_NUM 5

#define IR_GPIO_OUT_FUNC FUNC_GPIO5

Config Parameters for Receiving:

 // Config the buffer size via infrared receiving

#define RX_RCV_LEN 128

 // Config the GPIO register function and
multiplexing function of infrared pins

#define IR_GPIO_IN_NUM 14

#define IR_GPIO_IN_MUX PERIPHS_IO_MUX_MTMS_U

#define IR_GPIO_IN_FUNC FUNC_GPIO14

Other parameters:
#define USE_US_TIMER can be defined in user_config.h.
Modes of Transmitting Carrier Waveform:
Mode 1: IIS Clock Mode

MTMS pin, or GPIO14 is used to transmit carrier waveform under IIS clock mode. Please
refer to Figure 1 below.

#define GEN_IR_CLK_FROM_IIS 1

#define IR_GPIO_OUT_MUX PERIPHS_IO_MUX_MTMS_U

#define IR_GPIO_OUT_NUM 14

Espressif ! /!96 104 2016.06

!

13. IR Remote Control User Guide

#define IR_GPIO_OUT_FUNC FUNC_GPIO14

!

Mode 2: Sigma-delta Mode

#define GEN_IR_CLK_FROM_IIS 0

#define IR_GPIO_OUT_MUX PERIPHS_IO_MUX_GPIO5_U

#define IR_GPIO_OUT_NUM 5

#define IR_GPIO_OUT_FUNC FUNC_GPIO5

!

13.3. Functions of Infrared Sample Codes
The below functions can be implemented using infrared sample codes provided by
Espressif Systems:

• Functions of infrared transmitting and receiving can be invoked in the initialization
process, and a 4s loop timer can be configured to transmit infrared remote control
codes.

• Check the ring buffer of infrared remote control codes simultaneously. If there is any
data in the queue, it will be printed out.

• If any carrier waveform in comply with NEC infrared remote control protocol is
received by the state machine of infrared receiver, the instruction fields will be stored
in the ring buffer of infrared receiving codes. 

Espressif ! /!97 104 2016.06

!

14. Sniffer Introduction

14. Sniffer Introduction
14.1. Sniffer Introduction

ESP8266 can enter promiscuous mode (sniffer) and capture IEEE 802.11 packets in the air.
The following HT20 packets are support:

• 802.11b
• 802.11g
• 802.11n (from MCS0 to MCS7)
• AMPDU types of packets

The following are not supported:

• HT40
• LDPC

Although ESP8266 can not completely decipher these kinds of IEEE80211 packets
completely, it can still obtain the length of these special packets.

In summary, while in sniffer mode, ESP8266 can either capture completely the packets or
obtain the length of the packet:

• Packets that ESP8266 can decipher completely; ESP8266 returns with the
- MAC address of the both side of communication and encryption type and
- the length of entire packet.

• Packets that ESP8266 can only partial decipher; ESP8266 returns with
- the length of packet.

Structure RxControl and sniffer_buf are used to represent these two kinds of packets.
Structure sniffer_buf contains structure RxControl.

struct RxControl {

 signed rssi:8; // signal intensity of packet

 unsigned rate:4;

 unsigned is_group:1;

 unsigned:1;

 unsigned sig_mode:2; // 0:is 11n packet; 1:is not 11n
packet;

 unsigned legacy_length:12; // if not 11n packet, shows length of
packet.

 unsigned damatch0:1;

 unsigned damatch1:1;

Espressif ! /!98 104 2016.06

!

14. Sniffer Introduction

 unsigned bssidmatch0:1;

 unsigned bssidmatch1:1;

 unsigned MCS:7; // if is 11n packet, shows the
modulation

 // and code used (range from 0 to 76)

 unsigned CWB:1; // if is 11n packet, shows if is HT40 packet or
not

 unsigned HT_length:16;// if is 11n packet, shows length of
packet.

 unsigned Smoothing:1;

 unsigned Not_Sounding:1;

 unsigned:1;

 unsigned Aggregation:1;

 unsigned STBC:2;

 unsigned FEC_CODING:1; // if is 11n packet, shows if is LDPC
packet or not.

 unsigned SGI:1;

 unsigned rxend_state:8;

 unsigned ampdu_cnt:8;

 unsigned channel:4; //which channel this packet in.

 unsigned:12;

};

struct LenSeq{

 u16 len; // length of packet

 u16 seq; // serial number of packet, the high 12bits are serial
number,

 // low 14 bits are Fragment number (usually be 0)

 u8 addr3[6]; // the third address in packet

};

struct sniffer_buf{

 struct RxControl rx_ctrl;

 u8 buf[36]; // head of ieee80211 packet

 u16 cnt; // number count of packet

 struct LenSeq lenseq[1]; //length of packet

Espressif ! /!99 104 2016.06

!

14. Sniffer Introduction

};

struct sniffer_buf2{

 struct RxControl rx_ctrl;

 u8 buf[112];

 u16 cnt;

 u16 len; //length of packet

};

Callback wifi_promiscuous_rx has two parameters (buf and len). len means the
length of buf, it can be: len = 128, len = X * 10, len = 12:
Case of LEN == 128

• buf contains structure sniffer_buf2: it is the management packet, it has 112
Bytes data.

• sniffer_buf2.cnt is 1.
• sniffer_buf2.len is the length of packet.

Case of LEN == X * 10
• buf contains structure sniffer_buf: this structure is reliable, data packets

represented by it has been verified by CRC.
• sniffer_buf.cnt means the count of packets in buf. The value of len depends

on sniffer_buf.cnt.
- sniffer_buf.cnt==0, invalid buf; otherwise, len = 50 + cnt * 10

• sniffer_buf.buf contains the first 36 Bytes of IEEE80211 packet. Starting from
sniffer_buf.lenseq[0], each structure lenseq represent a length information of
packet. lenseq[0] represents the length of first packet. If there are two packets
where (sniffer_buf.cnt == 2), lenseq[1] represents the length of second
packet.

• If sniffer_buf.cnt > 1, it is a AMPDU packet, head of each MPDU packets are
similar, so we only provide the length of each packet (from head of MAC packet to
FCS)

• This structure contains: length of packet, MAC address of both sides of
communication, length of the head of packet.

Case of LEN == 12
• buf contains structure RxControl; but this structure is not reliable, we can not get

neither MAC address of both sides of communication nor length of the head of
packet.

• For AMPDU packet, we can not get the count of packets or the length of packet.
• This structure contains: length of packet, rssi and FEC_CODING.

Espressif ! /!100 104 2016.06

!

14. Sniffer Introduction

• RSSI and FEC_CODING are used to guess if the packets are sent from same device.

Summary
We should not take too long to process the packets. Otherwise, other packets may be lost.
The diagram below shows the format of a IEEE80211 packet:

!

• The first 24 Bytes of MAC Header of data packet are needed:
- Address 4 field depends on FromDS and ToDS which is in Frame Control;
- QoS Control field depends on Subtype which is in Frame Control;
- HT Control field depends on Order Field which is in Frame Control;
- More details are found in IEEE Std 80211-2012.

• For WEP packets, MAC Header is followed by 4 Bytes IV and before FCS there are 4
bytes ICV.

• For TKIP packet, MAC Header is followed by 4 Bytes IV and 4 bytes EIV, and before
FCS there are 8 bytes MIC and 4 bytes ICV.

• For CCMP packet, MAC Header is followed by 8 Bytes CCMP header, and before
FCS there are 8 bytes MIC.

14.2. Sniffer Application Scenarios
Because some APs won’t transmit UDP broadcast packets to WLAN, so only the UDP
packets from mobile phone can be listened. These UDP packets are from mobile phone to
AP, and are encrypted.
Scenario 1: IOT_device can get all packets from mobile phone
This scenario requires:

• The connection between mobile phone and AP is working in 802.11b, or 802.11g,
or 802.11n HT20 mode.

• The distance between mobile phone and AP is longer than the distance between
mobile phone and IOT_device.

IOT-device firmware can set filter of MAC address or MAC-header (include MAC-cryption-
header), it can also set a filter for retransmission.

Espressif ! /!101 104 2016.06

!

14. Sniffer Introduction

Meanwhile, for 802.11n AMPDU packets, IOT_device can also get the length of packet and
MAC-header (include MAC-cryption-header)
Scenario 2: IOT_device can not get all packets from mobile phone, signal is strong,
but packet format is not supported.
Case 1:
The distance between mobile phone and AP is much longer than the distance between
mobile phone and IOT_device. Then the high-frequency packets from mobile phone can be
got by AP, but can not be got by IOT_device.

For example, mobile phone sent MCS7 packets which can be got correctly by AP, but
IOT_device can only parse its packet header of physical layer (HT-SIG), because packet
header of physical layer is encoded on low-speed (6 Mbps).
Case 2:
Format of packets that mobile phone sent to AP is not supported by IOT_device, such as:

• HT40;
• LDPC;

• 11n MCS8 and later version, such as MIMO 2x2.

IOT_device can not get the whole packet, but can parse its packet header of physical layer
(HT-SIG).
In both case 1 and case 2, IOT_device can get HT-SIG which include the length of packet
in physical layer. Please pay attention on following items when using it:

• When it isn’t AMPDU packet or only one sub-frame in AMPDU packet, the length of
UDP packet can be speculated. If the time interval of UDP packets which sent from
phone APP is long (20ms ~ 50ms) , each UDP packet will in different packets in
physical layer, may be a AMPDU packet which only has one sub-frame.

• Firmware of IOT_device can filter packets from other devices according to RSSI.
• Packet of retransmission need to be filter according to the packets sequence, it

means that length of packets which sent consecutively need to be different. For
example:
- Two useful packets can be separated by a specific packet. The specific packet

works like separative sign.
- Length of packet in odd number to be 0 ~ 511, length of packet in even number

to be 512 ~1023

14.3. Phone APP
For Scenario 2, phone APP should notice:

• Time interval of each UDP packet to be longer than 20ms

Espressif ! /!102 104 2016.06

!

14. Sniffer Introduction

• Two data packets can be separated by a specific packet. The specific packet works
like separative sign.

• Packet with redundant data so that packet can verify each other.
• Set flag-packet at the beginning of sequence. Then phone APP can be cyclic

sending the whole sequence.
• Only need to send the lowest 2 Bytes of AP’s BSSID (MAC address), IOT-device can

still get it. If AP will broadcast its SSID, then phone APP need not to send AP’s SSID
either. So AP beacon need to be analyzed to check if the AP will broadcast its SSID.

• Length of UDP packet need to be multiply by 4. Because when phone APP sent a
AMPDU packet which only has one sub-frame, packet length will be filled to be a
multiple of 4.

For Scenario 1, phone APP can send packets as fast as possible.

Phone APP won’t know it is Scenario 1 or Scenario 2 for IOT_device.

14.4. IOT-device Firmware
For Scenario 2, IOT-device should notice:

• Search the channel which has strongest signal first, according to RSSI.
• Filter useless packets according to RSSI. Considering 10 ~ 15db fluctuations in the

air, some packets may be decline 10db or more. We could search the strongest
signal at first, then extend the range since find the target sequence.

• Check the Aggregation bit of HT-SIG to distinguish AMPDU packet.
• AMPDU packet can only be encrypt by CCMP(AES).
• To design the length of packet that works as separative sign, different QoS, different

encryption algorithm and AMPDU packet will be a multiple of 4, all of these should be
taken into consideration.

• Use relative value to transmit information, for example, the value that the length of
data packet minus the length of packet that works as separative sign.

Espressif ! /!103 104 2016.06

!

Appendix

Appendix
! Note:

For GPIO registers, SPI registers, UART registers and Timer registers, please refer to the following chapters.

Chapter Title Subject

Appendix 1 GPIO Registers Information on GPIO register names, addresses and description.

Appendix 2 SPI Registers Information on SPI register names, addresses and description.

Appendix 3 UART Registers Information on UART register names, addresses and description.

Appendix 4 Timer Registers Information on Timer register names, addresses and description.

Espressif ! /!104 104 2016.06

Appendix 1 GPIO Registers
GPIO Base Address
0x60000300
GPIO RegAddr = PERIPHS_GPIO_BASEADDR+ (OFFSET*4)

NU
M OFFSET RegAddr RegName Signal BitPos SW(R/W) Description

0 0x0000 0x60000300 GPIO_OUT GPIO_BT_SEL [31:16] R/W BT-Coexist Selection register
GPIO_OUT_DATA [15:0] R/W The output value when the GPIO pin is set as output.

1 0x0001 0x60000304 GPIO_OUT_W1TS [31:16]
GPIO_OUT_DATA_W1TS [15:0] WO Writing 1 into a bit in this register will set the related bit in GPIO_OUT_DATA

2 0x0002 0x60000308 GPIO_OUT_W1TC [31:16]
GPIO_OUT_DATA_W1TC [15:0] WO Writing 1 into a bit in this register will clear the related bit in GPIO_OUT_DATA

3 0x0003 0x6000030C GPIO_ENABLE [31:22]
GPIO_SDIO_SEL [21:16] R/W SDIO-dis selection register
GPIO_ENABLE_DATA [15:0] R/W The output enable register.

4 0x0004 0x60000310 GPIO_ENABLE_W1TS [31:16]
GPIO_ENABLE_DATA_W1TS [15:0] WO Writing 1 into a bit in this register will set the related bit in GPIO_ENABLE_DATA

5 0x0005 0x60000314 GPIO_ENABLE_W1TC [31:16]
GPIO_ENABLE_DATA_W1TC [15:0] WO Writing 1 into a bit in this register will clear the related bit in GPIO_ENABLE_DATA

6 0x0006 0x60000318 GPIO_IN GPIO_STRAPPING [31:16] The values of the strapping pins.
GPIO_IN_DATA [15:0] The values of the GPIO pins when the GPIO pin is set as input.

7 0x0007 0x6000031C GPIO_STATUS [31:16]
GPIO_STATUS_INTERRUPT [15:0] R/W Interrupt enable register.

8 0x0008 0x60000320 GPIO_STATUS_W1TS [31:16]
GPIO_STATUS_INTERRUPT_W1TS [15:0] WO Writing 1 into a bit in this register will set the related bit in GPIO_STATUS_INTERRUPT

9 0x0009 0x60000324 GPIO_STATUS_W1TC [31:16]
GPIO_STATUS_INTERRUPT_W1TC [15:0] WO Writing 1 into a bit in this register will clear the related bit in GPIO_STATUS_INTERRUPT

10 0x000a 0x60000328 GPIO_PIN0 [31:11]
GPIO_PIN0_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN0_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN0_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN0_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

11 0x000b 0x6000032C GPIO_PIN1 [31:11]
GPIO_PIN1_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN1_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN1_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN1_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

12 0x000c 0x60000330 GPIO_PIN2 [31:11]
GPIO_PIN2_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN2_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN2_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN2_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

13 0x000d 0x60000334 GPIO_PIN3 [31:11]
GPIO_PIN3_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN3_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN3_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN3_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

14 0x000e 0x60000338 GPIO_PIN4 [31:11]
GPIO_PIN4_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN4_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN4_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN4_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

15 0x000f 0x6000033C GPIO_PIN5 [31:11]
GPIO_PIN5_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN5_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN5_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN5_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

16 0x0010 0x60000340 GPIO_PIN6 [31:11]
GPIO_PIN6_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN6_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN6_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN6_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

17 0x0011 0x60000344 GPIO_PIN7 [31:11]
GPIO_PIN7_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN7_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN7_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN7_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

18 0x0012 0x60000348 GPIO_PIN8 [31:11]
GPIO_PIN8_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN8_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN8_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN8_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

19 0x0013 0x6000034C GPIO_PIN9 [31:11]
GPIO_PIN9_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN9_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN9_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN9_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

20 0x0014 0x60000350 GPIO_PIN10 [31:11]
GPIO_PIN10_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN10_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN10_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN10_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

21 0x0015 0x60000354 GPIO_PIN11 [31:11]
GPIO_PIN11_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN11_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN11_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN11_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

22 0x0016 0x60000358 GPIO_PIN12 [31:11]
GPIO_PIN12_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN12_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN12_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN12_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

23 0x0017 0x6000035C GPIO_PIN13 [31:11]
GPIO_PIN13_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN13_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN13_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN13_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

24 0x0018 0x60000360 GPIO_PIN14 [31:11]
GPIO_PIN14_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN14_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN14_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN14_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

25 0x0019 0x60000364 GPIO_PIN15 [31:11]
GPIO_PIN15_WAKEUP_ENABLE [10] R/W 0: disable; 1: enable GPIO wakeup CPU, only when GPIO_PIN0_INT_TYPE is 0x4 or 0x5

GPIO_PIN15_INT_TYPE [9:7] R/W 0: disable; 1: positive edge; 2: negative edge; 3: both types of edge; 4: low-level; 5: high-
level

[6:3]
GPIO_PIN15_DRIVER [2] R/W 1: open drain; 0: normal

[1]
GPIO_PIN15_SOURCE [0] R/W 1: sigma-delta; 0: GPIO_DATA

26 0x001a 0x60000368 GPIO_SIGMA_DELTA [31:17]
SIGMA_DELTA_ENABLE [16] R/W 1: enable sigma-delta; 0: disable
SIGMA_DELTA_PRESCALAR [15:8] R/W Clock pre-divider for sigma-delta.
SIGMA_DELTA_TARGET [7:0] R/W target level of the sigma-delta. It is a signed byte.

27 0x001b 0x6000036C GPIO_RTC_CALIB_SYNC RTC_CALIB_START [31] R/W Positvie edge of this bit will trigger the RTC-clock-calibration process.
[30:10]

RTC_PERIOD_NUM [9:0] R/W The cycle number of RTC-clock during RTC-clock-calibration
28 0x001c 0x60000370 GPIO_RTC_CALIB_VALUE RTC_CALIB_RDY [31] 0: during RTC-clock-calibration; 1: RTC-clock-calibration is done

RTC_CALIB_RDY_REAL [30] 0: during RTC-clock-calibration; 1: RTC-clock-calibration is done
[29:20]

RTC_CALIB_VALUE [19:0] The cycle number of clk_xtal (crystal clock) for the RTC_PERIOD_NUM cycles of RTC-
clock

Appendix 2 SPI Registers
Address RegName Signal BitPos Default SW(R/W) Description
0x0 SPI_CMD spi_usr [18] 1'b0 R/W In the master mode, it is the start bit of a single operation. Self-clear by hardware
0x4 SPI_ADDR iodata_start_addr [31:0] 32'h0 R/W In the master mode, it is the value of address in "address" phase.
0x8 SPI_CTRL [31:27] 5'h0 RO

spi_wr_bit_order [26] 1'b0 R/W In "command", "address", "write-data" (MOSI) phases, 1: LSB first; 0: MSB first
spi_rd_bit_order [25] 1'b0 R/W In "read-data" (MISO) phase, 1: LSB first; 0: MSB first
spi_qio_mode [24] 1'b0 R/W In the read operations, "address" phase and "read-data" phase apply 4 signals
spi_dio_mode [23] 1'b0 R/W In the read operations, "address" phase and "read-data" phase apply 2 signals
spi_qout_mode [20] 1'b0 R/W In the read operations, "read-data" phase apply 4 signals
spi_dout_mode [14] 1'b0 R/W In the read operations, "read-data" phase apply 2 signals
spi_fastrd_mode [13] 1'b1 R/W this bit enable the bits: spi_qio_mode, spi_dio_mode, spi_qout_mode and spi_dout_mode

0x10 SPI_RD_STATUS slv_rd_status [31:0] 32'h00 R/W In the slave mode, this register are the status register for the master to read out.
0x14 SPI_CTRL2 spi_cs_delay_num [31:28] 4'h0 R/W spi_cs signal is delayed by 80MHz clock cycles

spi_cs_delay_mode [27:26] 2'h0 R/W spi_cs signal is delayed by spi_clk. 0: zero; 1: half cycle; 2: one cycle
spi_mosi_delay_num [25:23] 3'h0 R/W MOSI signals are delayed by 80MHz clock cycles
spi_mosi_delay_mode [22:21] 2'h0 R/W MOSI signals are delayed by spi_clk. 0: zero; 1: half cycle; 2: one cycle
spi_miso_delay_num [20:18] 3'h0 R/W MISO signals are delayed by 80MHz clock cycles
spi_miso_delay_mode [17:16] 2'h0 R/W MISO signals are delayed by spi_clk. 0: zero; 1: half cycle; 2: one cycle

0x18 SPI_CLOCK spi_clk_equ_sysclk [31] 1'b1 R/W In the master mode, 1: spi_clk is eqaul to 80MHz, 0: spi_clk is divided from 80 MHz clock.
spi_clkdiv_pre [30:18] 13'b0 R/W In the master mode, it is pre-divider of spi_clk.

spi_clkcnt_N [17:12] 6'h3 R/W In the master mode, it is the divider of spi_clk. So spi_clk frequency is 80MHz/(spi_clkdiv_pre+1)/
(spi_clkcnt_N+1)

spi_clkcnt_H [11:6] 6'h1 R/W In the master mode, it must be floor((spi_clkcnt_N+1)/2-1). In the slave mode, it must be 0.
spi_clkcnt_L [5:0] 6'h3 R/W In the master mode, it must be eqaul to spi_clkcnt_N. In the slave mode, it must be 0.

0x1C SPI_USER spi_usr_command [31] 1'b1 R/W This bit enable the "command" phase of an operation.
spi_usr_addr [30] 1'b0 R/W This bit enable the "address" phase of an operation.
spi_usr_dummy [29] 1'b0 R/W This bit enable the "dummy" phase of an operation.
spi_usr_miso [28] 1'b0 R/W This bit enable the "read-data" phase of an operation.
spi_usr_mosi [27] 1'b0 R/W This bit enable the "write-data" phase of an operation.
reg_usr_mosi_highpart [25] 1'b0 R/W 1: "write-data" phase only access to high-part of the buffer spi_w8~spi_w15
reg_usr_miso_highpart [24] 1'b0 R/W 1: "read-data" phase only access to high-part of the buffer spi_w8~spi_w15
spi_sio [16] 1'b0 R/W 1: mosi and miso signals share the same pin
spi_fwrite_qio [15] 1'b0 R/W In the write operations, "address" phase and "read-data" phase apply 4 signals
spi_fwrite_dio [14] 1'b0 R/W In the write operations, "address" phase and "read-data" phase apply 2 signals
spi_fwrite_quad [13] 1'b0 R/W In the write operations, "read-data" phase apply 4 signals
spi_fwrite_dual [12] 1'b0 R/W In the write operations, "read-data" phase apply 2 signals
spi_wr_byte_order [11] 1'b0 R/W In "command", "address", "write-data" (MOSI) phases, 1: little-endian; 0: big_endian
spi_rd_byte_order [10] 1'b0 R/W In "read-data" (MISO) phase, 1: little-endian; 0: big_endian
spi_ck_i_edge [6] 1'b1 R/W In the slave mode, 1: rising-edge; 0: falling-edge

0x20 SPI_USER1 reg_usr_addr_bitlen [31:26] 6'd23 R/W The length in bits of "address" phase. The register value shall be (bit_num-1)
reg_usr_mosi_bitlen [25:17] 9'h0 R/W The length in bits of "write-data" phase. The register value shall be (bit_num-1)
reg_usr_miso_bitlen [16:8] 9'h0 R/W The length in bits of "read-data" phase. The register value shall be (bit_num-1)
reg_usr_dummy_cyclelen [7:0] 8'h0 R/W The length in spi_clk cycles of "dummy" phase. The register value shall be (cycle_num-1)

0x24 SPI_USER2 reg_usr_command_bitlen [31:28] 4'd7 R/W The length in bits of "command" phase. The register value shall be (bit_num-1)
reg_usr_command_value [15:0] 16'b0 R/W The value of "command" phase

0x28 SPI_WR_STATUS slv_wr_status [31:0] 32'b0 R/W In the slave mode, this register are the status register for the master to write into.
0x2C SPI_PIN spi_cs2_dis [2] 1'b1 R/W 1: disable CS2; 0: spi_cs signal is from/to CS2 pin

spi_cs1_dis [1] 1'b1 R/W 1: disable CS1; 0: spi_cs signal is from/to CS1 pin
spi_cs0_dis [0] 1'b0 R/W 1: disable CS0; 0: spi_cs signal is from/to CS0 pin

0x30 SPI_SLAVE spi_sync_reset [31] 1'b0 R/W It is the synchronous reset signal of the module. This bit is self-cleared by hardware.
spi_slave_mode [30] 1'b0 R/W 1: slave mode, 0: master mode.

slv_cmd_define [27] 1'b0 R/W 1: slave mode commands are defined in SPI_SLAVE3. 0: slave mode commands are fixed as 1: "write-
status"; 4: "read-status"; 2: "write-buffer" and 3: "read-buffer".

spi_trans_cnt [26:23] 4'b0 RO The operations counter in both the master mode and the slave mode.

spi_int_en [9:5] 5'b1_00
00 R/W Interrupt enable bits for the below 5 sources

spi_trans_done [4] 1'b0 R/W The interrupt raw bit for the completement of any operation in both the master mode and the slave mode.
slv_wr_sta_done [3] 1'b0 R/W The interrupt raw bit for the completement of "write-status" operation in the slave mode.
slv_rd_sta_done [2] 1'b0 R/W The interrupt raw bit for the completement of "read-status" operation in the slave mode.
slv_wr_buf_done [1] 1'b0 R/W The interrupt raw bit for the completement of "write-buffer" operation in the slave mode.
slv_rd_buf_done [0] 1'b0 R/W The interrupt raw bit for the completement of "read-buffer" operation in the slave mode.

0x34 SPI_SLAVE1 slv_status_bitlen [31:27] 5'b0 R/W In the slave mode, it is the length in bits for "write-status" and "read-status" operations. The register value
shall be (bit_num-1)

slv_buf_bitlen [24:16] 9'b0 R/W In the slave mode, it is the length in bits for "write-buffer" and "read-buffer" operations. The register value shall
be (bit_num-1)

slv_rd_addr_bitlen [15:10] 6'b0 R/W In the slave mode, it is the address length in bits for "read-buffer" operation. The register value shall be
(bit_num-1)

slv_wr_addr_bitlen [9:4] 6'b0 R/W In the slave mode, it is the address length in bits for "write-buffer" operation. The register value shall be
(bit_num-1)

slv_wrsta_dummy_en [3] 1'b0 R/W In the slave mode, it is the enable bit of "dummy" phase for "write-status" operations.
slv_rdsta_dummy_en [2] 1'b0 R/W In the slave mode, it is the enable bit of "dummy" phase for "read-status" operations.
slv_wrbuf_dummy_en [1] 1'b0 R/W In the slave mode, it is the enable bit of "dummy" phase for "write-buffer" operations.
slv_rdbuf_dummy_en [0] 1'b0 R/W In the slave mode, it is the enable bit of "dummy" phase for "read-buffer" operations.

0x38 SPI_SLAVE2 slv_wrbuf_dummy_cyclele
n [31:24] 8'b0 R/W In the slave mode, it is the length in spi_clk cycles "dummy" phase for "write-buffer" operations. The register

value shall be (cycle_num-1)

slv_rdbuf_dummy_cyclelen [23:16] 8'b0 R/W In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "read-buffer" operations. The register
value shall be (cycle_num-1)

slv_wrsta_dummy_cyclele
n [15:8] 8'b0 R/W In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "write-status" operations. The

register value shall be (cycle_num-1)

slv_rdsta_dummy_cyclelen [7:0] 8'b0 R/W In the slave mode, it is the length in spi_clk cycles of "dummy" phase for "read-status" operations. The
register value shall be (cycle_num-1)

0x3C SPI_SLAVE3 slv_wrsta_cmd_value [31:24] 8'b0 R/W In slave mode, it is the value of "write-status" command
slv_rdsta_cmd_value [23:16] 8'b0 R/W In slave mode, it is the value of "read-status" command
slv_wrbuf_cmd_value [15:8] 8'b0 R/W In slave mode, it is the value of "write-buffer" command
slv_rdbuf_cmd_value [7:0] 8'b0 R/W In slave mode, it is the value of "read-buffer" command

0x40~0x7C SPI_W0~SPI_W15 spi_w0~spi_w15 [31:0] 32'h0 R/W the data buffer inside SPI module. There are 64byte, i.e., 16 words. Note that only 32bit accessing are
supported.

0xFC SPI_EXT3 reg_int_hold_ena [1:0] 2'b0 R/W This register is for two SPI masters to share the same cs, clock and data signals.

Appendix 3 UART Registers
 Address RegName Signal BitPos Default SW(R/W) Description
 0x0 UART_FIFO [31:8] 24'h0 RO UART FIFO,length 128

 rxfifo_rd_byte [7:0] 8'b0 RO R/W share the same address
 0x4 UART_INT_RAW UART_INT_RAW UART INTERRUPT RAW STATE

 rxfifo_tout_int_raw [8] 1'b0 RO The interrupt raw bit for Rx time-out interrupt(depands on the
UART_RX_TOUT_THRHD)

 brk_det_int_raw [7] 1'b0 RO The interrupt raw bit for Rx byte start error
 cts_chg_int_raw [6] 1'b0 RO The interrupt raw bit for CTS changing level
 dsr_chg_int_raw [5] 1'b0 RO The interrupt raw bit for DSR changing level
 rxfifo_ovf_int_raw [4] 1'b0 RO The interrupt raw bit for rx fifo overflow
 frm_err_int_raw [3] 1'b0 RO The interrupt raw bit for other rx error
 parity_err_int_raw [2] 1'b0 RO The interrupt raw bit for parity check error

 txfifo_empty_int_raw [1] 1'b0 RO The interrupt raw bit for tx fifo empty interrupt(depands on
UART_TXFIFO_EMPTY_THRHD bits)

 rxfifo_full_int_raw [0] 1'b0 RO The interrupt raw bit for rx fifo full interrupt(depands on
UART_RXFIFO_FULL_THRHD bits)

 0x8 UART_INT_ST UART_INT_ST UART INTERRUPT STATE
REGISTER UART_INT_RAW&UART_INT_ENA

 rxfifo_tout_int_st [8] 1'b0 RO The interrupt state bit for Rx time-out event
 brk_det_int_st [7] 1'b0 RO The interrupt state bit for rx byte start error
 cts_chg_int_st [6] 1'b0 RO The interrupt state bit for CTS changing level
 dsr_chg_int_st [5] 1'b0 RO The interrupt state bit for DSR changing level
 rxfifo_ovf_int_st [4] 1'b0 RO The interrupt state bit for RX fifo overflow
 frm_err_int_st [3] 1'b0 RO The interrupt state for other rx error
 parity_err_int_st [2] 1'b0 RO The interrupt state bit for rx parity error
 txfifo_empty_int_st [1] 1'b0 RO The interrupt state bit for TX fifo empty
 rxfifo_full_int_st [0] 1'b0 RO The interrupt state bit for RX fifo full event

 0xC UART_INT_ENA UART_INT_ENA UART INTERRUPT ENABLE REGISTER
 rxfifo_tout_int_ena [8] 1'b0 R/W The interrupt enable bit for rx time-out interrupt
 brk_det_int_ena [7] 1'b0 R/W The interrupt enable bit for rx byte start error
 cts_chg_int_ena [6] 1'b0 R/W The interrupt enable bit for CTS changing level
 dsr_chg_int_ena [5] 1'b0 R/W The interrupt enable bit for DSR changing level
 rxfifo_ovf_int_ena [4] 1'b0 R/W The interrupt enable bit for rx fifo overflow
 frm_err_int_ena [3] 1'b0 R/W The interrupt enable bit for other rx error
 parity_err_int_ena [2] 1'b0 R/W The interrupt enable bit for parity error
 txfifo_empty_int_ena [1] 1'b0 R/W The interrupt enable bit for tx fifo empty event
 rxfifo_full_int_ena [0] 1'b0 R/W The interrupt enable bit for rx fifo full event

 0x10 UART_INT_CLR UART_INT_CLR UART INTERRUPT CLEAR REGISTER
 rxfifo_tout_int_clr [8] 1'b0 WO Set this bit to clear the rx time-out interrupt
 brk_det_int_clr [7] 1'b0 WO Set this bit to clear the rx byte start interrupt
 cts_chg_int_clr [6] 1'b0 WO Set this bit to clear the CTS changing interrupt
 dsr_chg_int_clr [5] 1'b0 WO Set this bit to clear the DSR changing interrupt
 rxfifo_ovf_int_clr [4] 1'b0 WO Set this bit to clear the rx fifo over-flow interrupt
 frm_err_int_clr [3] 1'b0 WO Set this bit to clear other rx error interrupt
 parity_err_int_clr [2] 1'b0 WO Set this bit to clear the parity error interrupt
 txfifo_empty_int_clr [1] 1'b0 WO Set this bit to clear the tx fifo empty interrupt
 rxfifo_full_int_clr [0] 1'b0 WO Set this bit to clear the rx fifo full interrupt

 0x14 UART_CLKDIV UART_CLKDIV UART CLK DIV REGISTER
 uart_clkdiv [19:0] 20'h2B6 R/W BAUDRATE = UART_CLK_FREQ / UART_CLKDIV

 0x18 UART_AUTOBAUD UART_AUTOBAUD UART BAUDRATE DETECT REGISTER
 glitch_filt [15:8] 8'h10 R/W

 [7:1] 7'h0 RO
 autobaud_en [0] 1'b0 R/W Set this bit to enable baudrate detect

UART_ST
ATUS

 UART_STATUS UART_STATUS UART STATUS REGISTER

 txd [31] 8'h0 RO The level of the uart txd pin
 rtsn [30] 1'b0 RO The level of uart rts pin
 dtrn [29] 1'b0 RO The level of uart dtr pin

 [28:14] 5'b0 RO
 txfifo_cnt [23:16] 8'b0 RO Number of data in UART TX fifo
 rxd [15] 1'b0 RO The level of uart rxd pin
 ctsn [14] 1'b0 RO The level of uart cts pin
 dsrn [13] 1'b0 RO The level of uart dsr pin

 [12:8] 5'b0 RO
 rxfifo_cnt [7:0] 8'b0 RO Number of data in uart rx fifo

 0x20 UART_CONF0 UART_CONF0 UART CONFIG0(UART0 and UART1)
 uart_dtr_inv [24] 1'h0 R/W Set this bit to inverse uart dtr level
 uart_rts_inv [23] 1'h0 R/W Set this bit to inverse uart rts level
 uart_txd_inv [22] 1'h0 R/W Set this bit to inverse uart txd level
 uart_dsr_inv [21] 1'h0 R/W Set this bit to inverse uart dsr level
 uart_cts_inv [20] 1'h0 R/W Set this bit to inverse uart cts level
 uart_rxd_inv [19] 1'h0 R/W Set this bit to inverse uart rxd level
 txfifo_rst [18] 1'h0 R/W Set this bit to reset uart tx fifo
 rxfifo_rst [17] 1'h0 R/W Set this bit to reset uart rx fifo
 tx_flow_en [15] 1'b0 R/W Set this bit to enable uart tx hardware flow control
 uart_loopback [14] 1'b0 R/W Set this bit to enable uart loopback test mode
 txd_brk [8] 1'b0 R/W RESERVED, DO NOT CHANGE THIS BIT
 sw_dtr [7] 1'b0 R/W sw dtr
 sw_rts [6] 1'b0 R/W sw rts
 stop_bit_num [5:4] 2'd1 R/W Set stop bit: 1:1bit 2:1.5bits 3:2bits
 bit_num [3:2] 2'd3 R/W Set bit num: 0:5bits 1:6bits 2:7bits 3:8bits
 parity_en [1] 1'b0 R/W Set this bit to enable uart parity check
 parity [0] 1'b0 R/W Set parity check: 0:even 1:odd
UART_CONF1 UART CONFIG1

 0x24 UART_CONF1 rx_tout_en [31] 1'b0 R/W Set this bit to enable rx time-out function
 rx_tout_thrhd [30:24] 7'b0 R/W Config bits for rx time-out threshold,uint: byte,0-127
 rx_flow_en [23] 1'b0 R/W Set this bit to enable rx hardware flow control
 rx_flow_thrhd [22:16] 7'h0 R/W The config bits for rx flow control threshold,0-127

 [15] 1'b0 RO
 txfifo_empty_thrhd [14:8] 7'h60 R/W The config bits for tx fifo empty threshold,0-127

 [7] 1'b0 RO
 rxfifo_full_thrhd [6:0] 7'h60 R/W The config bits for rx fifo full threshold,0-127

 0x28 UART_LOWPULSE UART_LOWPULSE

 lowpulse_min_cnt [19:0]

20'hFFFF
F

 RO used in baudrate detect

 0x2C UART_HIGHPULSE UART_HIGHPULSE

 highpulse_min_cnt [19:0]

20'hFFFF
F

 RO used in baudrate detect

 0x30 UART_RXD_CNT
 rxd_edge_cnt [9:0] 10'h0 RO used in baudrate detect

 0x78 UART_DATE uart_date [31:0]

32'h0620
00

 R/W UART HW INFO

 0x7C UART_ID uart_id [31:0] 32'h0500 R/W

Appendix 4 Timer Registers
Address RegName Signal BitPos Default SW(R/W) Description
0x0 FRC1_LOAD_ADDRESS frc1_load_value [22:0] 23'b0 R/W the load value into the counter

0x4 FRC1_COUNT_ADDRESS frc1_count [22:0] 23'h7fffff RO the current value of the counter. It is a decreasing
counter.

0x8 FRC1_CTRL_ADDRESS [31:9] 23'b0 RO

frc1_int [8] 1'b0 RO the status of the interrupt, when the count is
dereased to zero

frc1_ctrl [7:0] 8'b0 R/W bit[7]: timer enable
bit[6]: automatically reload, when the counter is
equal to zero
bit[3:2]: prescale-divider, 0: divided by 1, 1: divided
by 16, 2 or 3: divided by 256
bit[0]: interrupt type, 0:edge, 1:level

0xC FRC1_INT_ADDRESS [31:1] 30'b0 RO

frc1_int_clr_mask [0] 1'b0 R/W write to clear the status of the interrupt, if the
interrupt type is "level"

0x20 FRC2_LOAD_ADDRESS frc2_load_value [31:0] 32'b0 R/W the load value into the counter

0x24 FRC2_COUNT_ADDRESS frc2_count [31:0] 32'b1 RO the current value of the counter. It is a increasing
counter.

0x28 FRC2_CTRL_ADDRESS [31:9] 23'b0 RO

frc2_int [8] 1'b0 RO the status of the interrupt, when the count is equal to
the alarm value

frc2_ctrl [7:0] 8'b0 R/W bit[7]: timer enable
bit[6]: automatically reload, when the counter is
equal to zero
bit[3:2]: prescale-divider, 0: divided by 1, 1: divided
by 16, 2 or 3: divided by 256
bit[0]: interrupt type, 0:edge, 1:level

0x2C FRC2_INT_ADDRESS [31:1] 30'b0 RO

frc2_int_clr_mask [0] 1'b0 R/W write to clear the status of the interrupt, if the
interrupt type is "level"

0x30 FRC2_ALARM_ADDRESS frc2_alarm [31:0] 32'b0 R/W the alarm value for the counter

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

